ssd_vgg.py 4.55 KB
Newer Older
yhcao6's avatar
yhcao6 committed
1
2
3
4
5
6
7
8
import logging

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import (VGG, xavier_init, constant_init, kaiming_init,
                      normal_init)
from mmcv.runner import load_checkpoint
Cao Yuhang's avatar
Cao Yuhang committed
9

Kai Chen's avatar
Kai Chen committed
10
from ..registry import BACKBONES
yhcao6's avatar
yhcao6 committed
11
12


Kai Chen's avatar
Kai Chen committed
13
@BACKBONES.register_module
yhcao6's avatar
yhcao6 committed
14
15
16
class SSDVGG(VGG):
    extra_setting = {
        300: (256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256),
yhcao6's avatar
yhcao6 committed
17
        512: (256, 'S', 512, 128, 'S', 256, 128, 'S', 256, 128, 'S', 256, 128),
yhcao6's avatar
yhcao6 committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
    }

    def __init__(self,
                 input_size,
                 depth,
                 with_last_pool=False,
                 ceil_mode=True,
                 out_indices=(3, 4),
                 out_feature_indices=(22, 34),
                 l2_norm_scale=20.):
        super(SSDVGG, self).__init__(
            depth,
            with_last_pool=with_last_pool,
            ceil_mode=ceil_mode,
            out_indices=out_indices)
        assert input_size in (300, 512)
yhcao6's avatar
yhcao6 committed
34
        self.input_size = input_size
yhcao6's avatar
yhcao6 committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

        self.features.add_module(
            str(len(self.features)),
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1))
        self.features.add_module(
            str(len(self.features)),
            nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6))
        self.features.add_module(
            str(len(self.features)), nn.ReLU(inplace=True))
        self.features.add_module(
            str(len(self.features)), nn.Conv2d(1024, 1024, kernel_size=1))
        self.features.add_module(
            str(len(self.features)), nn.ReLU(inplace=True))
        self.out_feature_indices = out_feature_indices

        self.inplanes = 1024
        self.extra = self._make_extra_layers(self.extra_setting[input_size])
        self.l2_norm = L2Norm(
            self.features[out_feature_indices[0] - 1].out_channels,
            l2_norm_scale)

    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            logger = logging.getLogger()
            load_checkpoint(self, pretrained, strict=False, logger=logger)
        elif pretrained is None:
            for m in self.features.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, nn.BatchNorm2d):
                    constant_init(m, 1)
                elif isinstance(m, nn.Linear):
                    normal_init(m, std=0.01)
        else:
            raise TypeError('pretrained must be a str or None')

        for m in self.extra.modules():
            if isinstance(m, nn.Conv2d):
                xavier_init(m, distribution='uniform')

        constant_init(self.l2_norm, self.l2_norm.scale)

    def forward(self, x):
        outs = []
        for i, layer in enumerate(self.features):
            x = layer(x)
            if i in self.out_feature_indices:
                outs.append(x)
        for i, layer in enumerate(self.extra):
            x = F.relu(layer(x), inplace=True)
            if i % 2 == 1:
                outs.append(x)
        outs[0] = self.l2_norm(outs[0])
        if len(outs) == 1:
            return outs[0]
        else:
            return tuple(outs)

    def _make_extra_layers(self, outplanes):
        layers = []
        kernel_sizes = (1, 3)
        num_layers = 0
        outplane = None
        for i in range(len(outplanes)):
            if self.inplanes == 'S':
                self.inplanes = outplane
                continue
            k = kernel_sizes[num_layers % 2]
            if outplanes[i] == 'S':
                outplane = outplanes[i + 1]
                conv = nn.Conv2d(
                    self.inplanes, outplane, k, stride=2, padding=1)
            else:
                outplane = outplanes[i]
                conv = nn.Conv2d(
                    self.inplanes, outplane, k, stride=1, padding=0)
            layers.append(conv)
            self.inplanes = outplanes[i]
            num_layers += 1
yhcao6's avatar
yhcao6 committed
114
115
        if self.input_size == 512:
            layers.append(nn.Conv2d(self.inplanes, 256, 4, padding=1))
yhcao6's avatar
yhcao6 committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129

        return nn.Sequential(*layers)


class L2Norm(nn.Module):

    def __init__(self, n_dims, scale=20., eps=1e-10):
        super(L2Norm, self).__init__()
        self.n_dims = n_dims
        self.weight = nn.Parameter(torch.Tensor(self.n_dims))
        self.eps = eps
        self.scale = scale

    def forward(self, x):
Cao Yuhang's avatar
Cao Yuhang committed
130
131
132
133
134
        # normalization layer convert to FP32 in FP16 training
        x_float = x.float()
        norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps
        return (self.weight[None, :, None, None].float().expand_as(x_float) *
                x_float / norm).type_as(x)