train.py 7.28 KB
Newer Older
myownskyW7's avatar
myownskyW7 committed
1
2
from __future__ import division

3
import re
myownskyW7's avatar
myownskyW7 committed
4
5
6
from collections import OrderedDict

import torch
7
from mmcv.runner import Runner, DistSamplerSeedHook, obj_from_dict
myownskyW7's avatar
myownskyW7 committed
8
9
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel

10
from mmdet import datasets
Kai Chen's avatar
Kai Chen committed
11
12
from mmdet.core import (DistOptimizerHook, DistEvalmAPHook,
                        CocoDistEvalRecallHook, CocoDistEvalmAPHook)
myownskyW7's avatar
myownskyW7 committed
13
14
from mmdet.datasets import build_dataloader
from mmdet.models import RPN
Kai Chen's avatar
Kai Chen committed
15
from .env import get_root_logger
myownskyW7's avatar
myownskyW7 committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41


def parse_losses(losses):
    log_vars = OrderedDict()
    for loss_name, loss_value in losses.items():
        if isinstance(loss_value, torch.Tensor):
            log_vars[loss_name] = loss_value.mean()
        elif isinstance(loss_value, list):
            log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
        else:
            raise TypeError(
                '{} is not a tensor or list of tensors'.format(loss_name))

    loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key)

    log_vars['loss'] = loss
    for name in log_vars:
        log_vars[name] = log_vars[name].item()

    return loss, log_vars


def batch_processor(model, data, train_mode):
    losses = model(**data)
    loss, log_vars = parse_losses(losses)

42
43
    outputs = dict(
        loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))
myownskyW7's avatar
myownskyW7 committed
44
45
46
47

    return outputs


Kai Chen's avatar
Kai Chen committed
48
49
50
51
52
53
54
55
def train_detector(model,
                   dataset,
                   cfg,
                   distributed=False,
                   validate=False,
                   logger=None):
    if logger is None:
        logger = get_root_logger(cfg.log_level)
myownskyW7's avatar
myownskyW7 committed
56

Kai Chen's avatar
Kai Chen committed
57
58
59
    # start training
    if distributed:
        _dist_train(model, dataset, cfg, validate=validate)
myownskyW7's avatar
myownskyW7 committed
60
    else:
Kai Chen's avatar
Kai Chen committed
61
        _non_dist_train(model, dataset, cfg, validate=validate)
myownskyW7's avatar
myownskyW7 committed
62

Kai Chen's avatar
Kai Chen committed
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
def build_optimizer(model, optimizer_cfg):
    """Build optimizer from configs.

    Args:
        model (:obj:`nn.Module`): The model with parameters to be optimized.
        optimizer_cfg (dict): The config dict of the optimizer.
            Positional fields are:
                - type: class name of the optimizer.
                - lr: base learning rate.
            Optional fields are:
                - any arguments of the corresponding optimizer type, e.g.,
                  weight_decay, momentum, etc.
                - paramwise_options: a dict with 3 accepted fileds
                  (bias_lr_mult, bias_decay_mult, norm_decay_mult).
                  `bias_lr_mult` and `bias_decay_mult` will be multiplied to
                  the lr and weight decay respectively for all bias parameters
                  (except for the normalization layers), and
                  `norm_decay_mult` will be multiplied to the weight decay
                  for all weight and bias parameters of normalization layers.

    Returns:
        torch.optim.Optimizer: The initialized optimizer.
    """
    if hasattr(model, 'module'):
        model = model.module

    optimizer_cfg = optimizer_cfg.copy()
    paramwise_options = optimizer_cfg.pop('paramwise_options', None)
    # if no paramwise option is specified, just use the global setting
    if paramwise_options is None:
        return obj_from_dict(optimizer_cfg, torch.optim,
                             dict(params=model.parameters()))
    else:
        assert isinstance(paramwise_options, dict)
        # get base lr and weight decay
        base_lr = optimizer_cfg['lr']
        base_wd = optimizer_cfg.get('weight_decay', None)
        # weight_decay must be explicitly specified if mult is specified
        if ('bias_decay_mult' in paramwise_options
                or 'norm_decay_mult' in paramwise_options):
            assert base_wd is not None
        # get param-wise options
        bias_lr_mult = paramwise_options.get('bias_lr_mult', 1.)
        bias_decay_mult = paramwise_options.get('bias_decay_mult', 1.)
        norm_decay_mult = paramwise_options.get('norm_decay_mult', 1.)
        # set param-wise lr and weight decay
        params = []
        for name, param in model.named_parameters():
            if not param.requires_grad:
                continue

            param_group = {'params': [param]}
            # for norm layers, overwrite the weight decay of weight and bias
            # TODO: obtain the norm layer prefixes dynamically
            if re.search(r'(bn|gn)(\d+)?.(weight|bias)', name):
                if base_wd is not None:
                    param_group['weight_decay'] = base_wd * norm_decay_mult
            # for other layers, overwrite both lr and weight decay of bias
            elif name.endswith('.bias'):
                param_group['lr'] = base_lr * bias_lr_mult
                if base_wd is not None:
                    param_group['weight_decay'] = base_wd * bias_decay_mult
            # otherwise use the global settings

            params.append(param_group)

        optimizer_cls = getattr(torch.optim, optimizer_cfg.pop('type'))
        return optimizer_cls(params, **optimizer_cfg)


Kai Chen's avatar
Kai Chen committed
134
def _dist_train(model, dataset, cfg, validate=False):
myownskyW7's avatar
myownskyW7 committed
135
136
    # prepare data loaders
    data_loaders = [
137
138
139
140
141
        build_dataloader(
            dataset,
            cfg.data.imgs_per_gpu,
            cfg.data.workers_per_gpu,
            dist=True)
myownskyW7's avatar
myownskyW7 committed
142
143
    ]
    # put model on gpus
Kai Chen's avatar
Kai Chen committed
144
    model = MMDistributedDataParallel(model.cuda())
myownskyW7's avatar
myownskyW7 committed
145
    # build runner
146
147
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
myownskyW7's avatar
myownskyW7 committed
148
149
                    cfg.log_level)
    # register hooks
Kai Chen's avatar
Kai Chen committed
150
    optimizer_config = DistOptimizerHook(**cfg.optimizer_config)
myownskyW7's avatar
myownskyW7 committed
151
152
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config)
Kai Chen's avatar
Kai Chen committed
153
154
155
    runner.register_hook(DistSamplerSeedHook())
    # register eval hooks
    if validate:
156
        val_dataset_cfg = cfg.data.val
Kai Chen's avatar
Kai Chen committed
157
        if isinstance(model.module, RPN):
Kai Chen's avatar
Kai Chen committed
158
            # TODO: implement recall hooks for other datasets
159
            runner.register_hook(CocoDistEvalRecallHook(val_dataset_cfg))
Kai Chen's avatar
Kai Chen committed
160
        else:
161
162
163
            dataset_type = getattr(datasets, val_dataset_cfg.type)
            if issubclass(dataset_type, datasets.CocoDataset):
                runner.register_hook(CocoDistEvalmAPHook(val_dataset_cfg))
Kai Chen's avatar
Kai Chen committed
164
            else:
165
                runner.register_hook(DistEvalmAPHook(val_dataset_cfg))
Kai Chen's avatar
Kai Chen committed
166
167
168
169
170
171
172
173
174
175
176

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)


def _non_dist_train(model, dataset, cfg, validate=False):
    # prepare data loaders
    data_loaders = [
177
178
179
180
181
182
        build_dataloader(
            dataset,
            cfg.data.imgs_per_gpu,
            cfg.data.workers_per_gpu,
            cfg.gpus,
            dist=False)
Kai Chen's avatar
Kai Chen committed
183
184
185
186
    ]
    # put model on gpus
    model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
    # build runner
187
188
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
Kai Chen's avatar
Kai Chen committed
189
190
191
                    cfg.log_level)
    runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config)
myownskyW7's avatar
myownskyW7 committed
192
193
194
195
196

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
myownskyW7's avatar
myownskyW7 committed
197
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)