transforms.py 3.36 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
import mmcv
import numpy as np
import torch

Kai Chen's avatar
Kai Chen committed
5
__all__ = ['ImageTransform', 'BboxTransform', 'MaskTransform', 'Numpy2Tensor']
Kai Chen's avatar
Kai Chen committed
6
7
8


class ImageTransform(object):
Kai Chen's avatar
Kai Chen committed
9
10
    """Preprocess an image.

Kai Chen's avatar
Kai Chen committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
    1. rescale the image to expected size
    2. normalize the image
    3. flip the image (if needed)
    4. pad the image (if needed)
    5. transpose to (c, h, w)
    """

    def __init__(self,
                 mean=(0, 0, 0),
                 std=(1, 1, 1),
                 to_rgb=True,
                 size_divisor=None):
        self.mean = np.array(mean, dtype=np.float32)
        self.std = np.array(std, dtype=np.float32)
        self.to_rgb = to_rgb
        self.size_divisor = size_divisor

    def __call__(self, img, scale, flip=False):
Kai Chen's avatar
Kai Chen committed
29
        img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
Kai Chen's avatar
Kai Chen committed
30
        img_shape = img.shape
Kai Chen's avatar
Kai Chen committed
31
        img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
Kai Chen's avatar
Kai Chen committed
32
33
34
35
        if flip:
            img = mmcv.imflip(img)
        if self.size_divisor is not None:
            img = mmcv.impad_to_multiple(img, self.size_divisor)
Kai Chen's avatar
Kai Chen committed
36
37
38
            pad_shape = img.shape
        else:
            pad_shape = img_shape
Kai Chen's avatar
Kai Chen committed
39
        img = img.transpose(2, 0, 1)
Kai Chen's avatar
Kai Chen committed
40
        return img, img_shape, pad_shape, scale_factor
Kai Chen's avatar
Kai Chen committed
41
42


Kai Chen's avatar
Kai Chen committed
43
44
45
46
47
48
49
50
51
52
53
54
55
def bbox_flip(bboxes, img_shape):
    """Flip bboxes horizontally.

    Args:
        bboxes(ndarray): shape (..., 4*k)
        img_shape(tuple): (height, width)
    """
    assert bboxes.shape[-1] % 4 == 0
    w = img_shape[1]
    flipped = bboxes.copy()
    flipped[..., 0::4] = w - bboxes[..., 2::4] - 1
    flipped[..., 2::4] = w - bboxes[..., 0::4] - 1
    return flipped
Kai Chen's avatar
Kai Chen committed
56
57
58


class BboxTransform(object):
Kai Chen's avatar
Kai Chen committed
59
60
    """Preprocess gt bboxes.

Kai Chen's avatar
Kai Chen committed
61
62
63
64
65
66
67
68
69
70
71
    1. rescale bboxes according to image size
    2. flip bboxes (if needed)
    3. pad the first dimension to `max_num_gts`
    """

    def __init__(self, max_num_gts=None):
        self.max_num_gts = max_num_gts

    def __call__(self, bboxes, img_shape, scale_factor, flip=False):
        gt_bboxes = bboxes * scale_factor
        if flip:
Kai Chen's avatar
Kai Chen committed
72
            gt_bboxes = bbox_flip(gt_bboxes, img_shape)
pangjm's avatar
pangjm committed
73
74
        gt_bboxes[:, 0::2] = np.clip(gt_bboxes[:, 0::2], 0, img_shape[1])
        gt_bboxes[:, 1::2] = np.clip(gt_bboxes[:, 1::2], 0, img_shape[0])
Kai Chen's avatar
Kai Chen committed
75
76
77
78
79
80
81
82
83
        if self.max_num_gts is None:
            return gt_bboxes
        else:
            num_gts = gt_bboxes.shape[0]
            padded_bboxes = np.zeros((self.max_num_gts, 4), dtype=np.float32)
            padded_bboxes[:num_gts, :] = gt_bboxes
            return padded_bboxes


Kai Chen's avatar
Kai Chen committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
class MaskTransform(object):
    """Preprocess masks.

    1. resize masks to expected size and stack to a single array
    2. flip the masks (if needed)
    3. pad the masks (if needed)
    """

    def __call__(self, masks, pad_shape, scale_factor, flip=False):
        masks = [
            mmcv.imrescale(mask, scale_factor, interpolation='nearest')
            for mask in masks
        ]
        if flip:
Kai Chen's avatar
Kai Chen committed
98
            masks = [mmcv.imflip(mask) for mask in masks]
Kai Chen's avatar
Kai Chen committed
99
100
101
102
103
104
105
        padded_masks = [
            mmcv.impad(mask, pad_shape[:2], pad_val=0) for mask in masks
        ]
        padded_masks = np.stack(padded_masks, axis=0)
        return padded_masks


Kai Chen's avatar
Kai Chen committed
106
107
108
109
110
111
112
113
114
class Numpy2Tensor(object):

    def __init__(self):
        pass

    def __call__(self, *args):
        if len(args) == 1:
            return torch.from_numpy(args[0])
        else:
pangjm's avatar
pangjm committed
115
            return tuple([torch.from_numpy(np.array(array)) for array in args])