train.py 3.17 KB
Newer Older
pangjm's avatar
pangjm committed
1
from __future__ import division
Kai Chen's avatar
Kai Chen committed
2

pangjm's avatar
pangjm committed
3
import argparse
4
import copy
pangjm's avatar
pangjm committed
5
from mmcv import Config
myownskyW7's avatar
myownskyW7 committed
6
from mmcv.runner import obj_from_dict
7

Kai Chen's avatar
Kai Chen committed
8
from mmdet import datasets, __version__
9
from mmdet.datasets import ConcatDataset
Kai Chen's avatar
Kai Chen committed
10
11
from mmdet.apis import (train_detector, init_dist, get_root_logger,
                        set_random_seed)
myownskyW7's avatar
myownskyW7 committed
12
from mmdet.models import build_detector
Kai Chen's avatar
Kai Chen committed
13
14


pangjm's avatar
pangjm committed
15
def parse_args():
Kai Chen's avatar
Kai Chen committed
16
    parser = argparse.ArgumentParser(description='Train a detector')
pangjm's avatar
pangjm committed
17
    parser.add_argument('config', help='train config file path')
18
    parser.add_argument('--work_dir', help='the dir to save logs and models')
pangjm's avatar
pangjm committed
19
    parser.add_argument(
Kai Chen's avatar
Kai Chen committed
20
21
        '--validate',
        action='store_true',
Kai Chen's avatar
Kai Chen committed
22
        help='whether to evaluate the checkpoint during training')
Kai Chen's avatar
Kai Chen committed
23
    parser.add_argument(
Kai Chen's avatar
Kai Chen committed
24
25
26
27
28
29
        '--gpus',
        type=int,
        default=1,
        help='number of gpus to use '
        '(only applicable to non-distributed training)')
    parser.add_argument('--seed', type=int, default=None, help='random seed')
30
31
32
33
34
35
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
pangjm's avatar
pangjm committed
36
37
38
39
40
    args = parser.parse_args()

    return args


41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
def get_train_dataset(cfg):
    if isinstance(cfg.data.train['ann_file'], list) or isinstance(cfg.data.train['ann_file'], tuple):
        ann_files = cfg.data.train['ann_file']
        train_datasets = []
        for ann_file in ann_files:
            data_info = copy.deepcopy(cfg.data.train)
            data_info['ann_file'] = ann_file
            train_dset = obj_from_dict(data_info, datasets)            
            train_datasets.append(train_dset)
        if len(train_datasets) > 1:
            train_dataset = ConcatDataset(train_datasets)            
        else:
            train_dataset = train_datasets[0]
    else:
        train_dataset = obj_from_dict(cfg.data.train, datasets)
    return train_dataset


pangjm's avatar
pangjm committed
59
def main():
60
    args = parse_args()
Kai Chen's avatar
Kai Chen committed
61

Kai Chen's avatar
Kai Chen committed
62
    cfg = Config.fromfile(args.config)
Kai Chen's avatar
Kai Chen committed
63
    # update configs according to CLI args
64
65
66
    if args.work_dir is not None:
        cfg.work_dir = args.work_dir
    cfg.gpus = args.gpus
Kai Chen's avatar
Kai Chen committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    if cfg.checkpoint_config is not None:
        # save mmdet version in checkpoints as meta data
        cfg.checkpoint_config.meta = dict(
            mmdet_version=__version__, config=cfg.text)

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # init logger before other steps
    logger = get_root_logger(cfg.log_level)
    logger.info('Distributed training: {}'.format(distributed))

    # set random seeds
    if args.seed is not None:
        logger.info('Set random seed to {}'.format(args.seed))
        set_random_seed(args.seed)

Kai Chen's avatar
Kai Chen committed
88
89
    model = build_detector(
        cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
90
    train_dataset = get_train_dataset(cfg)
Kai Chen's avatar
Kai Chen committed
91
92
93
94
95
96
97
    train_detector(
        model,
        train_dataset,
        cfg,
        distributed=distributed,
        validate=args.validate,
        logger=logger)
pangjm's avatar
pangjm committed
98
99


Kai Chen's avatar
Kai Chen committed
100
if __name__ == '__main__':
pangjm's avatar
pangjm committed
101
    main()