deform_conv.py 6.87 KB
Newer Older
yhcao6's avatar
yhcao6 committed
1
2
3
4
import torch
from torch.autograd import Function
from torch.nn.modules.utils import _pair

yhcao6's avatar
yhcao6 committed
5
from .. import deform_conv_cuda
yhcao6's avatar
yhcao6 committed
6
7
8
9


class DeformConvFunction(Function):

yhcao6's avatar
yhcao6 committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
    @staticmethod
    def forward(ctx,
                input,
                offset,
                weight,
                stride=1,
                padding=0,
                dilation=1,
                deformable_groups=1,
                im2col_step=64):
        if input is not None and input.dim() != 4:
            raise ValueError(
                "Expected 4D tensor as input, got {}D tensor instead.".format(
                    input.dim()))
        ctx.stride = _pair(stride)
        ctx.padding = _pair(padding)
        ctx.dilation = _pair(dilation)
        ctx.deformable_groups = deformable_groups
        ctx.im2col_step = im2col_step
yhcao6's avatar
yhcao6 committed
29

yhcao6's avatar
yhcao6 committed
30
        ctx.save_for_backward(input, offset, weight)
yhcao6's avatar
yhcao6 committed
31

32
33
34
        output = input.new_empty(
            DeformConvFunction._output_size(input, weight, ctx.padding,
                                            ctx.dilation, ctx.stride))
yhcao6's avatar
yhcao6 committed
35

36
        ctx.bufs_ = [input.new_empty(0), input.new_empty(0)]  # columns, ones
yhcao6's avatar
yhcao6 committed
37
38
39
40

        if not input.is_cuda:
            raise NotImplementedError
        else:
yhcao6's avatar
yhcao6 committed
41
            cur_im2col_step = min(ctx.im2col_step, input.shape[0])
yhcao6's avatar
yhcao6 committed
42
43
            assert (input.shape[0] %
                    cur_im2col_step) == 0, 'im2col step must divide batchsize'
yhcao6's avatar
yhcao6 committed
44
45
46
47
48
            deform_conv_cuda.deform_conv_forward_cuda(
                input, weight, offset, output, ctx.bufs_[0], ctx.bufs_[1],
                weight.size(3), weight.size(2), ctx.stride[1], ctx.stride[0],
                ctx.padding[1], ctx.padding[0], ctx.dilation[1],
                ctx.dilation[0], ctx.deformable_groups, cur_im2col_step)
yhcao6's avatar
yhcao6 committed
49
50
        return output

yhcao6's avatar
yhcao6 committed
51
52
53
    @staticmethod
    def backward(ctx, grad_output):
        input, offset, weight = ctx.saved_tensors
yhcao6's avatar
yhcao6 committed
54
55
56
57
58
59

        grad_input = grad_offset = grad_weight = None

        if not grad_output.is_cuda:
            raise NotImplementedError
        else:
yhcao6's avatar
yhcao6 committed
60
            cur_im2col_step = min(ctx.im2col_step, input.shape[0])
yhcao6's avatar
yhcao6 committed
61
62
63
            assert (input.shape[0] %
                    cur_im2col_step) == 0, 'im2col step must divide batchsize'

yhcao6's avatar
yhcao6 committed
64
65
66
67
            if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
                grad_input = torch.zeros_like(input)
                grad_offset = torch.zeros_like(offset)
                deform_conv_cuda.deform_conv_backward_input_cuda(
yhcao6's avatar
yhcao6 committed
68
                    input, offset, grad_output, grad_input,
yhcao6's avatar
yhcao6 committed
69
70
71
72
73
74
75
76
                    grad_offset, weight, ctx.bufs_[0], weight.size(3),
                    weight.size(2), ctx.stride[1], ctx.stride[0],
                    ctx.padding[1], ctx.padding[0], ctx.dilation[1],
                    ctx.dilation[0], ctx.deformable_groups, cur_im2col_step)

            if ctx.needs_input_grad[2]:
                grad_weight = torch.zeros_like(weight)
                deform_conv_cuda.deform_conv_backward_parameters_cuda(
yhcao6's avatar
yhcao6 committed
77
                    input, offset, grad_output,
yhcao6's avatar
yhcao6 committed
78
79
80
81
                    grad_weight, ctx.bufs_[0], ctx.bufs_[1], weight.size(3),
                    weight.size(2), ctx.stride[1], ctx.stride[0],
                    ctx.padding[1], ctx.padding[0], ctx.dilation[1],
                    ctx.dilation[0], ctx.deformable_groups, 1, cur_im2col_step)
yhcao6's avatar
yhcao6 committed
82

yhcao6's avatar
yhcao6 committed
83
        return grad_input, grad_offset, grad_weight, None, None, None, None
yhcao6's avatar
yhcao6 committed
84

yhcao6's avatar
yhcao6 committed
85
86
    @staticmethod
    def _output_size(input, weight, padding, dilation, stride):
yhcao6's avatar
yhcao6 committed
87
88
89
90
        channels = weight.size(0)
        output_size = (input.size(0), channels)
        for d in range(input.dim() - 2):
            in_size = input.size(d + 2)
yhcao6's avatar
yhcao6 committed
91
92
93
94
            pad = padding[d]
            kernel = dilation[d] * (weight.size(d + 2) - 1) + 1
            stride_ = stride[d]
            output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, )
yhcao6's avatar
yhcao6 committed
95
96
97
98
99
        if not all(map(lambda s: s > 0, output_size)):
            raise ValueError(
                "convolution input is too small (output would be {})".format(
                    'x'.join(map(str, output_size))))
        return output_size
yhcao6's avatar
yhcao6 committed
100
101


102
103
104
105
106
107
108
109
class ModulatedDeformConvFunction(Function):

    @staticmethod
    def forward(ctx,
                input,
                offset,
                mask,
                weight,
110
111
112
                bias=None,
                stride=1,
                padding=0,
113
                dilation=1,
114
                deformable_groups=1):
115
116
117
118
        ctx.stride = stride
        ctx.padding = padding
        ctx.dilation = dilation
        ctx.deformable_groups = deformable_groups
119
120
121
        ctx.with_bias = bias is not None
        if not ctx.with_bias:
            bias = input.new_empty(1)  # fake tensor
122
123
124
125
126
        if not input.is_cuda:
            raise NotImplementedError
        if weight.requires_grad or mask.requires_grad or offset.requires_grad \
                or input.requires_grad:
            ctx.save_for_backward(input, offset, mask, weight, bias)
127
128
129
        output = input.new_empty(
            ModulatedDeformConvFunction._infer_shape(ctx, input, weight))
        ctx._bufs = [input.new_empty(0), input.new_empty(0)]
130
        deform_conv_cuda.modulated_deform_conv_cuda_forward(
131
132
133
            input, weight, bias, ctx._bufs[0], offset, mask, output,
            ctx._bufs[1], weight.shape[2], weight.shape[3], ctx.stride,
            ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation,
134
            ctx.deformable_groups, ctx.with_bias)
135
136
137
138
139
140
141
142
143
144
145
146
        return output

    @staticmethod
    def backward(ctx, grad_output):
        if not grad_output.is_cuda:
            raise NotImplementedError
        input, offset, mask, weight, bias = ctx.saved_tensors
        grad_input = torch.zeros_like(input)
        grad_offset = torch.zeros_like(offset)
        grad_mask = torch.zeros_like(mask)
        grad_weight = torch.zeros_like(weight)
        grad_bias = torch.zeros_like(bias)
147
        deform_conv_cuda.modulated_deform_conv_cuda_backward(
148
149
150
151
            input, weight, bias, ctx._bufs[0], offset, mask, ctx._bufs[1],
            grad_input, grad_weight, grad_bias, grad_offset, grad_mask,
            grad_output, weight.shape[2], weight.shape[3], ctx.stride,
            ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation,
152
            ctx.deformable_groups, ctx.with_bias)
153
154
        if not ctx.with_bias:
            grad_bias = None
155
156

        return (grad_input, grad_offset, grad_mask, grad_weight, grad_bias,
157
                None, None, None, None)
158
159
160
161
162
163
164
165
166
167
168
169
170
171

    @staticmethod
    def _infer_shape(ctx, input, weight):
        n = input.size(0)
        channels_out = weight.size(0)
        height, width = input.shape[2:4]
        kernel_h, kernel_w = weight.shape[2:4]
        height_out = (height + 2 * ctx.padding -
                      (ctx.dilation * (kernel_h - 1) + 1)) // ctx.stride + 1
        width_out = (width + 2 * ctx.padding -
                     (ctx.dilation * (kernel_w - 1) + 1)) // ctx.stride + 1
        return n, channels_out, height_out, width_out


yhcao6's avatar
yhcao6 committed
172
deform_conv = DeformConvFunction.apply
173
modulated_deform_conv = ModulatedDeformConvFunction.apply