deform_conv.py 6.58 KB
Newer Older
yhcao6's avatar
yhcao6 committed
1
2
3
4
import torch
from torch.autograd import Function
from torch.nn.modules.utils import _pair

yhcao6's avatar
yhcao6 committed
5
from .. import deform_conv_cuda
yhcao6's avatar
yhcao6 committed
6
7
8
9


class DeformConvFunction(Function):

yhcao6's avatar
yhcao6 committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
    @staticmethod
    def forward(ctx,
                input,
                offset,
                weight,
                stride=1,
                padding=0,
                dilation=1,
                deformable_groups=1,
                im2col_step=64):
        if input is not None and input.dim() != 4:
            raise ValueError(
                "Expected 4D tensor as input, got {}D tensor instead.".format(
                    input.dim()))
        ctx.stride = _pair(stride)
        ctx.padding = _pair(padding)
        ctx.dilation = _pair(dilation)
        ctx.deformable_groups = deformable_groups
        ctx.im2col_step = im2col_step
yhcao6's avatar
yhcao6 committed
29

yhcao6's avatar
yhcao6 committed
30
        ctx.save_for_backward(input, offset, weight)
yhcao6's avatar
yhcao6 committed
31

yhcao6's avatar
yhcao6 committed
32
33
        output = input.new(*DeformConvFunction._output_size(
            input, weight, ctx.padding, ctx.dilation, ctx.stride))
yhcao6's avatar
yhcao6 committed
34

yhcao6's avatar
yhcao6 committed
35
        ctx.bufs_ = [input.new(), input.new()]  # columns, ones
yhcao6's avatar
yhcao6 committed
36
37
38
39

        if not input.is_cuda:
            raise NotImplementedError
        else:
yhcao6's avatar
yhcao6 committed
40
            cur_im2col_step = min(ctx.im2col_step, input.shape[0])
yhcao6's avatar
yhcao6 committed
41
42
            assert (input.shape[0] %
                    cur_im2col_step) == 0, 'im2col step must divide batchsize'
yhcao6's avatar
yhcao6 committed
43
44
45
46
47
            deform_conv_cuda.deform_conv_forward_cuda(
                input, weight, offset, output, ctx.bufs_[0], ctx.bufs_[1],
                weight.size(3), weight.size(2), ctx.stride[1], ctx.stride[0],
                ctx.padding[1], ctx.padding[0], ctx.dilation[1],
                ctx.dilation[0], ctx.deformable_groups, cur_im2col_step)
yhcao6's avatar
yhcao6 committed
48
49
        return output

yhcao6's avatar
yhcao6 committed
50
51
52
    @staticmethod
    def backward(ctx, grad_output):
        input, offset, weight = ctx.saved_tensors
yhcao6's avatar
yhcao6 committed
53
54
55
56
57
58

        grad_input = grad_offset = grad_weight = None

        if not grad_output.is_cuda:
            raise NotImplementedError
        else:
yhcao6's avatar
yhcao6 committed
59
            cur_im2col_step = min(ctx.im2col_step, input.shape[0])
yhcao6's avatar
yhcao6 committed
60
61
62
            assert (input.shape[0] %
                    cur_im2col_step) == 0, 'im2col step must divide batchsize'

yhcao6's avatar
yhcao6 committed
63
64
65
66
            if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
                grad_input = torch.zeros_like(input)
                grad_offset = torch.zeros_like(offset)
                deform_conv_cuda.deform_conv_backward_input_cuda(
yhcao6's avatar
yhcao6 committed
67
                    input, offset, grad_output, grad_input,
yhcao6's avatar
yhcao6 committed
68
69
70
71
72
73
74
75
                    grad_offset, weight, ctx.bufs_[0], weight.size(3),
                    weight.size(2), ctx.stride[1], ctx.stride[0],
                    ctx.padding[1], ctx.padding[0], ctx.dilation[1],
                    ctx.dilation[0], ctx.deformable_groups, cur_im2col_step)

            if ctx.needs_input_grad[2]:
                grad_weight = torch.zeros_like(weight)
                deform_conv_cuda.deform_conv_backward_parameters_cuda(
yhcao6's avatar
yhcao6 committed
76
                    input, offset, grad_output,
yhcao6's avatar
yhcao6 committed
77
78
79
80
                    grad_weight, ctx.bufs_[0], ctx.bufs_[1], weight.size(3),
                    weight.size(2), ctx.stride[1], ctx.stride[0],
                    ctx.padding[1], ctx.padding[0], ctx.dilation[1],
                    ctx.dilation[0], ctx.deformable_groups, 1, cur_im2col_step)
yhcao6's avatar
yhcao6 committed
81

yhcao6's avatar
yhcao6 committed
82
        return grad_input, grad_offset, grad_weight, None, None, None, None
yhcao6's avatar
yhcao6 committed
83

yhcao6's avatar
yhcao6 committed
84
85
    @staticmethod
    def _output_size(input, weight, padding, dilation, stride):
yhcao6's avatar
yhcao6 committed
86
87
88
89
        channels = weight.size(0)
        output_size = (input.size(0), channels)
        for d in range(input.dim() - 2):
            in_size = input.size(d + 2)
yhcao6's avatar
yhcao6 committed
90
91
92
93
            pad = padding[d]
            kernel = dilation[d] * (weight.size(d + 2) - 1) + 1
            stride_ = stride[d]
            output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, )
yhcao6's avatar
yhcao6 committed
94
95
96
97
98
        if not all(map(lambda s: s > 0, output_size)):
            raise ValueError(
                "convolution input is too small (output would be {})".format(
                    'x'.join(map(str, output_size))))
        return output_size
yhcao6's avatar
yhcao6 committed
99
100


101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
class ModulatedDeformConvFunction(Function):

    @staticmethod
    def forward(ctx,
                input,
                offset,
                mask,
                weight,
                bias,
                stride,
                padding,
                dilation=1,
                deformable_groups=1):
        ctx.stride = stride
        ctx.padding = padding
        ctx.dilation = dilation
        ctx.deformable_groups = deformable_groups
        if not input.is_cuda:
            raise NotImplementedError
        if weight.requires_grad or mask.requires_grad or offset.requires_grad \
                or input.requires_grad:
            ctx.save_for_backward(input, offset, mask, weight, bias)
        output = input.new(
            *ModulatedDeformConvFunction._infer_shape(ctx, input, weight))
        ctx._bufs = [input.new(), input.new()]
126
        deform_conv_cuda.modulated_deform_conv_cuda_forward(
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
            input, weight, bias, ctx._bufs[0], offset, mask, output,
            ctx._bufs[1], weight.shape[2], weight.shape[3], ctx.stride,
            ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation,
            ctx.deformable_groups)
        return output

    @staticmethod
    def backward(ctx, grad_output):
        if not grad_output.is_cuda:
            raise NotImplementedError
        input, offset, mask, weight, bias = ctx.saved_tensors
        grad_input = torch.zeros_like(input)
        grad_offset = torch.zeros_like(offset)
        grad_mask = torch.zeros_like(mask)
        grad_weight = torch.zeros_like(weight)
        grad_bias = torch.zeros_like(bias)
143
        deform_conv_cuda.modulated_deform_conv_cuda_backward(
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
            input, weight, bias, ctx._bufs[0], offset, mask, ctx._bufs[1],
            grad_input, grad_weight, grad_bias, grad_offset, grad_mask,
            grad_output, weight.shape[2], weight.shape[3], ctx.stride,
            ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation,
            ctx.deformable_groups)

        return (grad_input, grad_offset, grad_mask, grad_weight, grad_bias,
                None, None, None, None)

    @staticmethod
    def _infer_shape(ctx, input, weight):
        n = input.size(0)
        channels_out = weight.size(0)
        height, width = input.shape[2:4]
        kernel_h, kernel_w = weight.shape[2:4]
        height_out = (height + 2 * ctx.padding -
                      (ctx.dilation * (kernel_h - 1) + 1)) // ctx.stride + 1
        width_out = (width + 2 * ctx.padding -
                     (ctx.dilation * (kernel_w - 1) + 1)) // ctx.stride + 1
        return n, channels_out, height_out, width_out


yhcao6's avatar
yhcao6 committed
166
deform_conv = DeformConvFunction.apply
167
modulated_deform_conv = ModulatedDeformConvFunction.apply