transforms.py 4.1 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
import mmcv
import numpy as np
import torch

pangjm's avatar
pangjm committed
5
from mmdet.core.mask_ops import segms
Kai Chen's avatar
Kai Chen committed
6
7
8
9
10
11
12

__all__ = [
    'ImageTransform', 'BboxTransform', 'PolyMaskTransform', 'Numpy2Tensor'
]


class ImageTransform(object):
Kai Chen's avatar
Kai Chen committed
13
14
    """Preprocess an image.

Kai Chen's avatar
Kai Chen committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
    1. rescale the image to expected size
    2. normalize the image
    3. flip the image (if needed)
    4. pad the image (if needed)
    5. transpose to (c, h, w)
    """

    def __init__(self,
                 mean=(0, 0, 0),
                 std=(1, 1, 1),
                 to_rgb=True,
                 size_divisor=None):
        self.mean = np.array(mean, dtype=np.float32)
        self.std = np.array(std, dtype=np.float32)
        self.to_rgb = to_rgb
        self.size_divisor = size_divisor

    def __call__(self, img, scale, flip=False):
Kai Chen's avatar
Kai Chen committed
33
        img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
Kai Chen's avatar
Kai Chen committed
34
        img_shape = img.shape
Kai Chen's avatar
Kai Chen committed
35
        img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
Kai Chen's avatar
Kai Chen committed
36
37
38
39
        if flip:
            img = mmcv.imflip(img)
        if self.size_divisor is not None:
            img = mmcv.impad_to_multiple(img, self.size_divisor)
Kai Chen's avatar
Kai Chen committed
40
41
42
            pad_shape = img.shape
        else:
            pad_shape = img_shape
Kai Chen's avatar
Kai Chen committed
43
        img = img.transpose(2, 0, 1)
Kai Chen's avatar
Kai Chen committed
44
        return img, img_shape, pad_shape, scale_factor
Kai Chen's avatar
Kai Chen committed
45
46


Kai Chen's avatar
Kai Chen committed
47
48
49
50
51
52
53
54
55
56
57
58
59
def bbox_flip(bboxes, img_shape):
    """Flip bboxes horizontally.

    Args:
        bboxes(ndarray): shape (..., 4*k)
        img_shape(tuple): (height, width)
    """
    assert bboxes.shape[-1] % 4 == 0
    w = img_shape[1]
    flipped = bboxes.copy()
    flipped[..., 0::4] = w - bboxes[..., 2::4] - 1
    flipped[..., 2::4] = w - bboxes[..., 0::4] - 1
    return flipped
Kai Chen's avatar
Kai Chen committed
60
61
62


class BboxTransform(object):
Kai Chen's avatar
Kai Chen committed
63
64
    """Preprocess gt bboxes.

Kai Chen's avatar
Kai Chen committed
65
66
67
68
69
70
71
72
73
74
75
    1. rescale bboxes according to image size
    2. flip bboxes (if needed)
    3. pad the first dimension to `max_num_gts`
    """

    def __init__(self, max_num_gts=None):
        self.max_num_gts = max_num_gts

    def __call__(self, bboxes, img_shape, scale_factor, flip=False):
        gt_bboxes = bboxes * scale_factor
        if flip:
Kai Chen's avatar
Kai Chen committed
76
            gt_bboxes = bbox_flip(gt_bboxes, img_shape)
pangjm's avatar
pangjm committed
77
78
        gt_bboxes[:, 0::2] = np.clip(gt_bboxes[:, 0::2], 0, img_shape[1])
        gt_bboxes[:, 1::2] = np.clip(gt_bboxes[:, 1::2], 0, img_shape[0])
Kai Chen's avatar
Kai Chen committed
79
80
81
82
83
84
85
86
87
88
        if self.max_num_gts is None:
            return gt_bboxes
        else:
            num_gts = gt_bboxes.shape[0]
            padded_bboxes = np.zeros((self.max_num_gts, 4), dtype=np.float32)
            padded_bboxes[:num_gts, :] = gt_bboxes
            return padded_bboxes


class PolyMaskTransform(object):
Kai Chen's avatar
Kai Chen committed
89
    """Preprocess polygons."""
Kai Chen's avatar
Kai Chen committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

    def __init__(self):
        pass

    def __call__(self, gt_mask_polys, gt_poly_lens, img_h, img_w, flip=False):
        if flip:
            gt_mask_polys = segms.flip_segms(gt_mask_polys, img_h, img_w)
        num_polys_per_mask = np.array(
            [len(mask_polys) for mask_polys in gt_mask_polys], dtype=np.int64)
        gt_poly_lens = np.array(gt_poly_lens, dtype=np.int64)
        gt_mask_polys = [
            np.concatenate(mask_polys).astype(np.float32)
            for mask_polys in gt_mask_polys
        ]
        gt_mask_polys = np.concatenate(gt_mask_polys)
        return gt_mask_polys, gt_poly_lens, num_polys_per_mask


Kai Chen's avatar
Kai Chen committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
class MaskTransform(object):
    """Preprocess masks.

    1. resize masks to expected size and stack to a single array
    2. flip the masks (if needed)
    3. pad the masks (if needed)
    """

    def __call__(self, masks, pad_shape, scale_factor, flip=False):
        masks = [
            mmcv.imrescale(mask, scale_factor, interpolation='nearest')
            for mask in masks
        ]
        if flip:
            masks = [mask[:, ::-1] for mask in masks]
        padded_masks = [
            mmcv.impad(mask, pad_shape[:2], pad_val=0) for mask in masks
        ]
        padded_masks = np.stack(padded_masks, axis=0)
        return padded_masks


Kai Chen's avatar
Kai Chen committed
130
131
132
133
134
135
136
137
138
class Numpy2Tensor(object):

    def __init__(self):
        pass

    def __call__(self, *args):
        if len(args) == 1:
            return torch.from_numpy(args[0])
        else:
pangjm's avatar
pangjm committed
139
            return tuple([torch.from_numpy(np.array(array)) for array in args])