resnet.py 9.64 KB
Newer Older
1
2
import logging

Kai Chen's avatar
Kai Chen committed
3
4
import torch.nn as nn
import torch.utils.checkpoint as cp
Kai Chen's avatar
Kai Chen committed
5
6

from mmcv.cnn import constant_init, kaiming_init
Kai Chen's avatar
Kai Chen committed
7
from mmcv.runner import load_checkpoint
Kai Chen's avatar
Kai Chen committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30


def conv3x3(in_planes, out_planes, stride=1, dilation=1):
    "3x3 convolution with padding"
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        dilation=dilation,
        bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
Kai Chen's avatar
Kai Chen committed
31
32
                 style='pytorch',
                 with_cp=False):
Kai Chen's avatar
Kai Chen committed
33
34
35
36
37
38
39
40
41
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride, dilation)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation
Kai Chen's avatar
Kai Chen committed
42
        assert not with_cp
Kai Chen's avatar
Kai Chen committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
72
                 style='pytorch',
Kai Chen's avatar
Kai Chen committed
73
                 with_cp=False):
74
75
76
        """Bottleneck block.
        If style is "pytorch", the stride-two layer is the 3x3 conv layer,
        if it is "caffe", the stride-two layer is the first 1x1 conv layer.
Kai Chen's avatar
Kai Chen committed
77
78
        """
        super(Bottleneck, self).__init__()
79
80
        assert style in ['pytorch', 'caffe']
        if style == 'pytorch':
Kai Chen's avatar
Kai Chen committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
            conv1_stride = 1
            conv2_stride = stride
        else:
            conv1_stride = stride
            conv2_stride = 1
        self.conv1 = nn.Conv2d(
            inplanes, planes, kernel_size=1, stride=conv1_stride, bias=False)
        self.conv2 = nn.Conv2d(
            planes,
            planes,
            kernel_size=3,
            stride=conv2_stride,
            padding=dilation,
            dilation=dilation,
            bias=False)

        self.bn1 = nn.BatchNorm2d(planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(
            planes, planes * self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation
        self.with_cp = with_cp

    def forward(self, x):

        def _inner_forward(x):
            residual = x

            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)

            out = self.conv2(out)
            out = self.bn2(out)
            out = self.relu(out)

            out = self.conv3(out)
            out = self.bn3(out)

            if self.downsample is not None:
                residual = self.downsample(x)

            out += residual

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


def make_res_layer(block,
                   inplanes,
                   planes,
                   blocks,
                   stride=1,
                   dilation=1,
147
                   style='pytorch',
Kai Chen's avatar
Kai Chen committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
                   with_cp=False):
    downsample = None
    if stride != 1 or inplanes != planes * block.expansion:
        downsample = nn.Sequential(
            nn.Conv2d(
                inplanes,
                planes * block.expansion,
                kernel_size=1,
                stride=stride,
                bias=False),
            nn.BatchNorm2d(planes * block.expansion),
        )

    layers = []
    layers.append(
        block(
            inplanes,
            planes,
            stride,
            dilation,
            downsample,
            style=style,
            with_cp=with_cp))
    inplanes = planes * block.expansion
    for i in range(1, blocks):
        layers.append(
            block(inplanes, planes, 1, dilation, style=style, with_cp=with_cp))

    return nn.Sequential(*layers)


Kai Chen's avatar
Kai Chen committed
179
180
class ResNet(nn.Module):
    """ResNet backbone.
Kai Chen's avatar
Kai Chen committed
181

Kai Chen's avatar
Kai Chen committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    Args:
        depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
        num_stages (int): Resnet stages, normally 4.
        strides (Sequence[int]): Strides of the first block of each stage.
        dilations (Sequence[int]): Dilation of each stage.
        out_indices (Sequence[int]): Output from which stages.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer.
        frozen_stages (int): Stages to be frozen (all param fixed). -1 means
            not freezing any parameters.
        bn_eval (bool): Whether to set BN layers to eval mode, namely, freeze
            running stats (mean and var).
        bn_frozen (bool): Whether to freeze weight and bias of BN layers.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
    """
Kai Chen's avatar
Kai Chen committed
199

Kai Chen's avatar
Kai Chen committed
200
201
202
203
204
205
206
    arch_settings = {
        18: (BasicBlock, (2, 2, 2, 2)),
        34: (BasicBlock, (3, 4, 6, 3)),
        50: (Bottleneck, (3, 4, 6, 3)),
        101: (Bottleneck, (3, 4, 23, 3)),
        152: (Bottleneck, (3, 8, 36, 3))
    }
Kai Chen's avatar
Kai Chen committed
207
208

    def __init__(self,
Kai Chen's avatar
Kai Chen committed
209
210
                 depth,
                 num_stages=4,
Kai Chen's avatar
Kai Chen committed
211
212
213
                 strides=(1, 2, 2, 2),
                 dilations=(1, 1, 1, 1),
                 out_indices=(0, 1, 2, 3),
214
                 style='pytorch',
Kai Chen's avatar
Kai Chen committed
215
216
217
218
                 frozen_stages=-1,
                 bn_eval=True,
                 bn_frozen=False,
                 with_cp=False):
Kai Chen's avatar
Kai Chen committed
219
        super(ResNet, self).__init__()
Kai Chen's avatar
Kai Chen committed
220
221
222
223
224
225
226
227
        if depth not in self.arch_settings:
            raise KeyError('invalid depth {} for resnet'.format(depth))
        assert num_stages >= 1 and num_stages <= 4
        block, stage_blocks = self.arch_settings[depth]
        stage_blocks = stage_blocks[:num_stages]
        assert len(strides) == len(dilations) == num_stages
        assert max(out_indices) < num_stages

Kai Chen's avatar
Kai Chen committed
228
229
        self.out_indices = out_indices
        self.style = style
Kai Chen's avatar
Kai Chen committed
230
231
232
233
234
        self.frozen_stages = frozen_stages
        self.bn_eval = bn_eval
        self.bn_frozen = bn_frozen
        self.with_cp = with_cp

Kai Chen's avatar
Kai Chen committed
235
236
237
238
239
240
241
        self.inplanes = 64
        self.conv1 = nn.Conv2d(
            3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

Kai Chen's avatar
Kai Chen committed
242
243
        self.res_layers = []
        for i, num_blocks in enumerate(stage_blocks):
Kai Chen's avatar
Kai Chen committed
244
245
246
247
248
249
250
251
252
253
254
255
256
            stride = strides[i]
            dilation = dilations[i]
            planes = 64 * 2**i
            res_layer = make_res_layer(
                block,
                self.inplanes,
                planes,
                num_blocks,
                stride=stride,
                dilation=dilation,
                style=self.style,
                with_cp=with_cp)
            self.inplanes = planes * block.expansion
Kai Chen's avatar
Kai Chen committed
257
            layer_name = 'layer{}'.format(i + 1)
258
            self.add_module(layer_name, res_layer)
Kai Chen's avatar
Kai Chen committed
259
260
            self.res_layers.append(layer_name)

Kai Chen's avatar
Kai Chen committed
261
        self.feat_dim = block.expansion * 64 * 2**(len(stage_blocks) - 1)
pangjm's avatar
pangjm committed
262

Kai Chen's avatar
Kai Chen committed
263
264
    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
265
266
            logger = logging.getLogger()
            load_checkpoint(self, pretrained, strict=False, logger=logger)
Kai Chen's avatar
Kai Chen committed
267
268
269
        elif pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
Kai Chen's avatar
Kai Chen committed
270
                    kaiming_init(m)
Kai Chen's avatar
Kai Chen committed
271
                elif isinstance(m, nn.BatchNorm2d):
Kai Chen's avatar
Kai Chen committed
272
                    constant_init(m, 1)
Kai Chen's avatar
Kai Chen committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
        else:
            raise TypeError('pretrained must be a str or None')

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        outs = []
        for i, layer_name in enumerate(self.res_layers):
            res_layer = getattr(self, layer_name)
            x = res_layer(x)
            if i in self.out_indices:
                outs.append(x)
        if len(outs) == 1:
            return outs[0]
        else:
            return tuple(outs)

    def train(self, mode=True):
        super(ResNet, self).train(mode)
Kai Chen's avatar
Kai Chen committed
294
        if self.bn_eval:
Kai Chen's avatar
Kai Chen committed
295
296
297
            for m in self.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.eval()
Kai Chen's avatar
Kai Chen committed
298
                    if self.bn_frozen:
pangjm's avatar
pangjm committed
299
300
                        for params in m.parameters():
                            params.requires_grad = False
Kai Chen's avatar
Kai Chen committed
301
302
303
304
305
306
307
308
309
310
311
312
313
        if mode and self.frozen_stages >= 0:
            for param in self.conv1.parameters():
                param.requires_grad = False
            for param in self.bn1.parameters():
                param.requires_grad = False
            self.bn1.eval()
            self.bn1.weight.requires_grad = False
            self.bn1.bias.requires_grad = False
            for i in range(1, self.frozen_stages + 1):
                mod = getattr(self, 'layer{}'.format(i))
                mod.eval()
                for param in mod.parameters():
                    param.requires_grad = False