README.md 6.07 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
2
# ShuffleNetV2

sunxx1's avatar
sunxx1 committed
3
4
5
6
7
8
## 论文

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

- https://openaccess.thecvf.com/content_ECCV_2018/papers/Ningning_Light-weight_CNN_Architecture_ECCV_2018_paper.pdf

sunxx1's avatar
sunxx1 committed
9
## 模型结构
sunxx1's avatar
sunxx1 committed
10
11
12

ShuffleNetV2 是一种轻量级神经网络模型,旨在提高深度学习模型的效率和速度。ShuffleNetV2 利用组卷积和通道重排等技术,在保持准确性的同时,将参数量和计算量大幅降低。

sunxx1's avatar
sunxx1 committed
13
14
![20231124114915](./images/20231124114915.png)

sunxx1's avatar
sunxx1 committed
15
## 算法原理
sunxx1's avatar
sunxx1 committed
16
17
18

ShuffleNetV2 的网络结构可以分为两个部分:基础网络和分类器。基础网络主要包含一系列 ShuffleNetV2 单元,用于提取图像特征;分类器则将提取的特征映射到类别概率上。

sunxx1's avatar
sunxx1 committed
19
![20231124120131](./images/20231124120131.png)
sunxx1's avatar
sunxx1 committed
20

sunxx1's avatar
sunxx1 committed
21
## 环境配置
sunxx1's avatar
sunxx1 committed
22

sunxx1's avatar
sunxx1 committed
23
### Docker(方法一)
sunxx1's avatar
sunxx1 committed
24

renzhc's avatar
renzhc committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
推荐使用docker方式运行,拉取提供的docker镜像

```shell
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu20.04-dtk24.04.1-py3.10
```

基于拉取的镜像创建容器

```shell
# <your IMAGE ID or NAME>用以上拉取的docker的镜像ID或名称替换
docker run -it --name=shufflenet-v2-mmcv --network=host --ipc=host --shm-size=16g  --device=/dev/kfd --device=/dev/dri --device=/dev/mkfd --group-add video --privileged --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal:/opt/hyhal:ro <your IMAGE ID> bash
```

克隆并安装git仓库,安装相关依赖

sunxx1's avatar
sunxx1 committed
40
41
```python
git clone --recursive http://developer.hpccube.com/codes/modelzoo/shufflenet_v2_mmcv.git
renzhc's avatar
renzhc committed
42
43
cd shufflenet_v2_mmcv/mmpretrain-mmcv
pip install -e .
sunxx1's avatar
sunxx1 committed
44
45
46
47
48
pip install -r requirements.txt
```

### Dockerfile(方法二)

renzhc's avatar
renzhc committed
49
```bash
sunxx1's avatar
sunxx1 committed
50
cd shufflenet_v2_mmcv/docker
renzhc's avatar
renzhc committed
51
52
53
54
55
docker build --no-cache -t shufflenet_v2_mmcv:latest .
docker run -it --name=shufflenet_v2_mmcv --network=host --ipc=host --shm-size=16g  --device=/dev/kfd --device=/dev/dri --device=/dev/mkfd --group-add video --privileged --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal:/opt/hyhal:ro <your IMAGE ID> bash
pip install -e .
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:
# pip install -r requirements.txt
sunxx1's avatar
sunxx1 committed
56
57
58
59
60
61
62
```

### Anaconda(方法三)

1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.hpccube.com/tool/

```plaintext
renzhc's avatar
renzhc committed
63
64
65
66
67
DTK驱动: DTK-24.04.1
python==3.10
torch==2.1.0
torchvision==0.16.0+das1.1.git7d45932.abi1.dtk2404.torch2.1
mmcv==2.0.1+das1.1.gite58da25.abi1.dtk2404.torch2.1.0
sunxx1's avatar
sunxx1 committed
68
69
70
71
Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应
```

2、其它非特殊库参照requirements.txt安装
sunxx1's avatar
sunxx1 committed
72

sunxx1's avatar
sunxx1 committed
73
```plaintext
sunxx1's avatar
sunxx1 committed
74
75
pip install -r requirements.txt
```
sunxx1's avatar
sunxx1 committed
76

sunxx1's avatar
sunxx1 committed
77
## 数据集
sunxx1's avatar
sunxx1 committed
78

renzhc's avatar
renzhc committed
79
### ImageNet
sunxx1's avatar
sunxx1 committed
80

renzhc's avatar
renzhc committed
81
在本项目中可以使用ImageNet数据集。ImageNet数据集官方下载地址:https://image-net.org。
sunxx1's avatar
sunxx1 committed
82

renzhc's avatar
renzhc committed
83
也可于SCNet快速下载[imagenet-2012](http://113.200.138.88:18080/aidatasets/project-dependency/imagenet-2012),下载其中的ILSVRC2012_img_train.tar和ILSVRC2012_img_val.tar,并按照以下方式解包
dcuai's avatar
dcuai committed
84

renzhc's avatar
renzhc committed
85
86
87
88
89
```bash
cd mmpretrain-mmcv/data/imagenet
mkdir train && cd train
tar -xvf ILSVRC2012_img_train.tar
```
dcuai's avatar
dcuai committed
90

renzhc's avatar
renzhc committed
91
92
93
94
95
96
97
98
99
100
101
解包后是1000个tar文件,每个tar对应了一个类别,分别解包至对应文件夹,可利用如下shell脚本。

```bash
for tarfile in *.tar; do
    dirname="${tarfile%.tar}"
    mkdir "$dirname"
    tar -xvf "$tarfile" -C "$dirname"
done
```

目录结构如下
sunxx1's avatar
sunxx1 committed
102

sunxx1's avatar
sunxx1 committed
103
```
dcuai's avatar
dcuai committed
104
data
renzhc's avatar
renzhc committed
105
106
107
108
109
110
111
112
└── imagenet
    ├── train
    │   ├── n01440764
    │   │   ├── n01440764_10026.JPEG
    │   │   ├── n01440764_10027.JPEG
    ├──val
    │   ├── n01440764 
    │   │   ├── ILSVRC2012_val_00000293.JPEG
sunxx1's avatar
sunxx1 committed
113
```
sunxx1's avatar
sunxx1 committed
114

renzhc's avatar
renzhc committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
### Tiny-ImageNet-200

由于ImageNet完整数据集较大,可以使用[tiny-imagenet-200](http://cs231n.stanford.edu/tiny-imagenet-200.zip)进行测试,可于SCNet快速下载[tiny-imagenet-200-scnet](http://113.200.138.88:18080/aidatasets/project-dependency/tiny-imagenet-200) ,此时需要对配置脚本进行一些修改:

- dataset配置文件(configs/\_\_base\_\_/datasets/{DATASET_CONFIG}.py)中,需要对以下字段进行修改
  
  ```python
   # dataset settings
    dataset_type = 'CustomDataset'  # 修改为CustomDataset
    data_preprocessor = dict(
        num_classes=200,  # 修改类别为200
        ...
    )
    ...
    train_dataloader = dict(
        batch_size=32,
        num_workers=5,
        dataset=dict(
            type=dataset_type,
            data_root='data/imagenet',
            data_prefix='train',  # 改为data_prefix='train',val_dataloader中同理
            pipeline=train_pipeline),
        sampler=dict(type='DefaultSampler', shuffle=True),
    )
  ```

- model配置文件(configs/\_\_base\_\_/models/{MODEL_CONFIG}.py)中,同样需要将类别相关的值设置为200。
  
  ```python
  # model settings
  model = dict(
      type='ImageClassifier',
      ...
      head=dict(
          type='LinearClsHead',
          num_classes=200,  # 将类别数改为200
          ...
      ))
  ```
  
  本仓库的mmpretrain-mmcv中提供了使用tiny-imagenet-200进行训练的若干配置脚本,可参考进行设置。

sunxx1's avatar
sunxx1 committed
157
## 训练
sunxx1's avatar
sunxx1 committed
158

renzhc's avatar
renzhc committed
159
160
161
162
163
164
165
166
167
168
169
将训练数据集解压后放置于mmpretrain-mmcv/data/,对于tiny-imagenet,目录结构如下:

```
data
└── imagenet
    ├── test/
    ├── train/
    ├── val/
    ├── wnids.txt
    └── words.txt
```
sunxx1's avatar
sunxx1 committed
170

renzhc's avatar
renzhc committed
171
### 单机8卡训练
sunxx1's avatar
sunxx1 committed
172

renzhc's avatar
renzhc committed
173
- tiny-imagenet-200
sunxx1's avatar
sunxx1 committed
174

renzhc's avatar
renzhc committed
175
176
177
178
179
180
181
182
183
```shell
bash tools/dist_train.sh shufflenet-v2-test.py 8
```

- imagenet

```shell
bash tools/dist_train.sh configs/shufflenet_v2/shufflenet-v2-1x_16xb64_in1k.py 8
```
dcuai's avatar
dcuai committed
184

renzhc's avatar
renzhc committed
185
如需其他卡数训练,将命令中的8改为所需卡数即可;
dcuai's avatar
dcuai committed
186

renzhc's avatar
renzhc committed
187
如遇端口占用问题,可在tools/dist_train.sh修改端口。
sunxx1's avatar
sunxx1 committed
188
189


sunxx1's avatar
sunxx1 committed
190

sunxx1's avatar
sunxx1 committed
191
192
193
194
195
196
197
198
## 应用场景

### 算法类别

图像分类

### 热点行业

renzhc's avatar
renzhc committed
199
制造,能源,交通,网安,安防
sunxx1's avatar
sunxx1 committed
200

dcuai's avatar
dcuai committed
201
## 源码仓库及问题反馈
sunxx1's avatar
sunxx1 committed
202

sunxx1's avatar
sunxx1 committed
203
https://developer.hpccube.com/codes/modelzoo/shufflenet_v2_mmcv
sunxx1's avatar
sunxx1 committed
204

dcuai's avatar
dcuai committed
205
## 参考资料
sunxx1's avatar
sunxx1 committed
206

renzhc's avatar
renzhc committed
207
https://github.com/open-mmlab/mmpretrainhttps://github.com/open-mmlab/mmpretrain