"cacheflow/master/frontend.py" did not exist on "46ce1356f7108f27af9ebb153ddbe02d1a3fa97d"
training_stsbenchmark.py 4.55 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""
This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch. It generates sentence embeddings
that can be compared using cosine-similarity to measure the similarity.
"""

import math
import sys
import os
import gzip
import csv
import logging
import argparse

from datetime import datetime
from torch.utils.data import DataLoader
from sentence_transformers import SentenceTransformer,  SentencesDataset, LoggingHandler, losses, models, util
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from sentence_transformers.readers import STSBenchmarkDataReader, InputExample

#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S',
                    level=logging.INFO,
                    handlers=[LoggingHandler()])

#### params
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=str, default='datasets/stsbenchmark.tsv.gz', help='Input txt path')
parser.add_argument('--train_batch_size', type=int, default=16)
parser.add_argument('--num_epochs', type=int, default=10)
parser.add_argument('--model_name_or_path', type=str, default="bert-base-uncased")
parser.add_argument('--save_root_path', type=str, default="output", help='Model output folder')
parser.add_argument('--lr', default=2e-05)
args = parser.parse_args()

# Check if dataset exsist. If not, download and extract  it
sts_dataset_path = args.data_path

if not os.path.exists(sts_dataset_path):
    util.http_get('https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/datasets/stsbenchmark.tsv.gz', sts_dataset_path)

#You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base
model_name = args.model_name_or_path

# Read the dataset
train_batch_size = args.train_batch_size
num_epochs = args.num_epochs
model_save_path = args.save_root_path + "/training_stsbenchmark_" + model_name.replace("/", "-") + '-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")

# Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings
word_embedding_model = models.Transformer(model_name)

# Apply mean pooling to get one fixed sized sentence vector
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
                               pooling_mode_mean_tokens=True,
                               pooling_mode_cls_token=False,
                               pooling_mode_max_tokens=False)

model = SentenceTransformer(modules=[word_embedding_model, pooling_model])

# Convert the dataset to a DataLoader ready for training
logging.info("Read STSbenchmark train dataset")

train_samples = []
dev_samples = []
test_samples = []
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn:
    reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE)
    for row in reader:
        score = float(row['score']) / 5.0  # Normalize score to range 0 ... 1
        inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score)
        if row['split'] == 'dev':
            dev_samples.append(inp_example)
        elif row['split'] == 'test':
            test_samples.append(inp_example)
        else:
            train_samples.append(inp_example)

train_dataset = SentencesDataset(train_samples, model)
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=train_batch_size)
train_loss = losses.CosineSimilarityLoss(model=model)

logging.info("Read STSbenchmark dev dataset")
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev')

# Configure the training. We skip evaluation in this example
warmup_steps = math.ceil(len(train_dataset) * num_epochs / train_batch_size * 0.1) #10% of train data for warm-up
logging.info("Warmup-steps: {}".format(warmup_steps))

# Train the model
model.fit(train_objectives=[(train_dataloader, train_loss)],
          evaluator=evaluator,
          epochs=num_epochs,
          evaluation_steps=1000,
          warmup_steps=warmup_steps,
          output_path=model_save_path)

##############################################################################
#
# Load the stored model and evaluate its performance on STS benchmark dataset
#
##############################################################################

model = SentenceTransformer(model_save_path)
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test')
test_evaluator(model, output_path=model_save_path)