""" This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch. It generates sentence embeddings that can be compared using cosine-similarity to measure the similarity. """ import math import sys import os import gzip import csv import logging import argparse from datetime import datetime from torch.utils.data import DataLoader from sentence_transformers import SentenceTransformer, SentencesDataset, LoggingHandler, losses, models, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import STSBenchmarkDataReader, InputExample #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### params parser = argparse.ArgumentParser() parser.add_argument('--data_path', type=str, default='datasets/stsbenchmark.tsv.gz', help='Input txt path') parser.add_argument('--train_batch_size', type=int, default=16) parser.add_argument('--num_epochs', type=int, default=10) parser.add_argument('--model_name_or_path', type=str, default="bert-base-uncased") parser.add_argument('--save_root_path', type=str, default="output", help='Model output folder') parser.add_argument('--lr', default=2e-05) args = parser.parse_args() # Check if dataset exsist. If not, download and extract it sts_dataset_path = args.data_path if not os.path.exists(sts_dataset_path): util.http_get('https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/datasets/stsbenchmark.tsv.gz', sts_dataset_path) #You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = args.model_name_or_path # Read the dataset train_batch_size = args.train_batch_size num_epochs = args.num_epochs model_save_path = args.save_root_path + "/training_stsbenchmark_" + model_name.replace("/", "-") + '-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score) if row['split'] == 'dev': dev_samples.append(inp_example) elif row['split'] == 'test': test_samples.append(inp_example) else: train_samples.append(inp_example) train_dataset = SentencesDataset(train_samples, model) train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=train_batch_size) train_loss = losses.CosineSimilarityLoss(model=model) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') # Configure the training. We skip evaluation in this example warmup_steps = math.ceil(len(train_dataset) * num_epochs / train_batch_size * 0.1) #10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit(train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=model_save_path) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test') test_evaluator(model, output_path=model_save_path)