time_count.py 3.96 KB
Newer Older
wangwf's avatar
init  
wangwf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

import json
import os.path as osp
import time

from diffusers import DiffusionPipeline
import migraphx_diffusers
from migraphx_diffusers import AutoTimer
import torch


def parse_args():
    date_str = time.strftime("%Y%m%d-%H%M%S", time.localtime())

    from argparse import ArgumentParser
    parser = ArgumentParser(description="SDXL inference with migraphx backend")

    #=========================== mdoel load and compile ========================
    parser.add_argument(
        "-m", 
        "--model-dir",
        type=str,
        required=True,
        help="Path to local model directory.",
    )
    parser.add_argument(
        "--force-compile",
        action="store_true",
        default=False,
        help="Ignore existing .mxr files and override them",
    )
    parser.add_argument(
        "--img-size",
        type=int,
        default=None,
        help="output image size",
    )
    parser.add_argument(
        "--num-images-per-prompt",
        type=int,
        default=1,
        help="The number of images to generate per prompt."
    )
    # --------------------------------------------------------------------------

    # =============================== generation ===============================
    parser.add_argument(
        "-t",
        "--num-inference-steps",
        type=int,
        default=50,
        help="Number of iteration steps",
    )
    parser.add_argument(
        "--out-csv-file",
        type=str,
        default=f"./perf-{date_str}.csv",
        help="Prefix of path for saving results",
    )
    # --------------------------------------------------------------------------

    # =============================== time count ===============================
    parser.add_argument(
        "--num-warmup-loops",
        type=int,
        default=1,
        help="warmup loops",
    )
    parser.add_argument(
        "--num-count-loops",
        type=int,
        default=100,
        help="time count loops",
    )
    # --------------------------------------------------------------------------

    args = parser.parse_args()
    return args


def get_name_and_migraphx_config(model_dir):
    model_index_json = osp.join(model_dir, "model_index.json")
    with open(model_index_json, "r") as f:
        pipe_cfg = json.load(f)
    
    if pipe_cfg["_class_name"] == "StableDiffusionXLPipeline":
        return 'sdxl', migraphx_diffusers.DEFAULT_ARGS['sdxl']
    elif pipe_cfg["_class_name"] == "StableDiffusionPipeline":
        return 'sd2.1', migraphx_diffusers.DEFAULT_ARGS['sd2.1']
    else:
        raise NotImplementedError(
            f"{pipe_cfg['_class_name']} has not been adapted yet")


def main():
    args = parse_args()
    pipe_name, migraphx_config = get_name_and_migraphx_config(args.model_dir)
    assert pipe_name in ['sdxl', 'sd2.1'], "Only support SDXL or SD2.1!"

    if args.img_size is not None:
        migraphx_config['common_args']['img_size'] = args.img_size
    migraphx_config['common_args'].update(dict(
        batch=args.num_images_per_prompt,
        force_compile=args.force_compile,
    ))

    pipe = DiffusionPipeline.from_pretrained(
        args.model_dir,
        torch_dtype=torch.float16, 
        migraphx_config=migraphx_config
    )
    pipe.to("cuda")

    t = AutoTimer()
    t.add_targets([
        (pipe, "end2end"), 
        (pipe.text_encoder, "text_encoder"), 
        (pipe.unet, "unet"),
        (pipe.vae.decode, "vae_decoder")
    ])
    if hasattr(pipe, "text_encoder_2"):
        t.add_target(pipe.text_encoder_2, key="text_encoder_2")
    
    for i in range(args.num_warmup_loops + args.num_count_loops):
        if i == args.num_warmup_loops:
            t.start_work()
        pipe(prompt="the ocean in dream", 
             negative_prompt=None, 
             num_inference_steps=args.num_inference_steps)

    table = t.summary(batchsize=migraphx_config['common_args']['batch'])
    t.clear()

    with open(args.out_csv_file, 'w') as f:
        f.write(table.get_csv_string())


if __name__ == "__main__":
    main()