gen_p2_images.py 5.02 KB
Newer Older
wangwf's avatar
init  
wangwf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from collections import namedtuple
import csv
import json
import os
import os.path as osp

from diffusers import DiffusionPipeline
import migraphx_diffusers
import torch


def parse_args():
    from argparse import ArgumentParser
    parser = ArgumentParser(description="SDXL inference with migraphx backend")

    #=========================== mdoel load and compile ========================
    parser.add_argument(
        "-m", 
        "--model-dir",
        type=str,
        required=True,
        help="Path to local model directory.",
    )
    parser.add_argument(
        "--force-compile",
        action="store_true",
        default=False,
        help="Ignore existing .mxr files and override them",
    )
    parser.add_argument(
        "--img-size",
        type=int,
        default=None,
        help="output image size",
    )
    parser.add_argument(
        "--num-images-per-prompt",
        type=int,
        default=1,
        help="The number of images to generate per prompt."
    )
    # --------------------------------------------------------------------------

    # =============================== generation ===============================
    parser.add_argument(
        "-p",
        "--parti-prompts-file",
        type=str,
        required=True,
        help="Number of iteration steps",
    )
    parser.add_argument(
        "-t",
        "--num-inference-steps",
        type=int,
        default=50,
        help="Number of iteration steps",
    )
    parser.add_argument(
        "--save-dir",
        type=str,
        default=None,
        help="Path to save images",
    )
    parser.add_argument(
        "-s",
        "--seed",
        type=int,
        default=42,
        help="Random seed",
    )
    parser.add_argument(
        "--resume",
        action="store_true",
        help="resume image generation",
    )
    # --------------------------------------------------------------------------

    args = parser.parse_args()
    return args


def get_name_and_migraphx_config(model_dir):
    model_index_json = osp.join(model_dir, "model_index.json")
    with open(model_index_json, "r") as f:
        pipe_cfg = json.load(f)
    
    if pipe_cfg["_class_name"] == "StableDiffusionXLPipeline":
        return 'sdxl', migraphx_diffusers.DEFAULT_ARGS['sdxl']
    elif pipe_cfg["_class_name"] == "StableDiffusionPipeline":
        return 'sd2.1', migraphx_diffusers.DEFAULT_ARGS['sd2.1']
    else:
        raise NotImplementedError(
            f"{pipe_cfg['_class_name']} has not been adapted yet")


def parse_prompts(parti_prompts_file):
    Prompt = namedtuple("Prompt", 
                        ["prompt_text", "category", "challenge", "note"])
    prompt_list = []

    with open(parti_prompts_file, "r") as f:
        csv_reader = csv.reader(f, delimiter="\t")
        for i, row in enumerate(csv_reader):
            if i == 0:
                continue
            prompt_list.append(Prompt(*row))
    
    return prompt_list


def main():
    args = parse_args()
    name, migraphx_config = get_name_and_migraphx_config(args.model_dir)

    if args.img_size is not None:
        migraphx_config['common_args']['img_size'] = args.img_size
    migraphx_config['common_args'].update(dict(
        batch=args.num_images_per_prompt,
        force_compile=args.force_compile,
    ))

    pipe = DiffusionPipeline.from_pretrained(
        args.model_dir,
        torch_dtype=torch.float16,
        migraphx_config=migraphx_config
    )
    pipe.to("cuda")

    os.makedirs(args.save_dir, exist_ok=True)
    generator = torch.Generator("cuda").manual_seed(args.seed)

    print("Generating image...")
    for i, prompt in enumerate(parse_prompts(args.parti_prompts_file)):
        sub_dir = osp.join(args.save_dir, 
                           prompt.category.replace(" ", "").replace("&", "_"),
                           f"prompt_{i:0>4d}")
        prompt_json = osp.join(sub_dir, "prompt_info.json")

        # =========================== resume =========================
        if args.resume:
            check_file_list = [osp.join(sub_dir, f"image_{j:0>2d}.png") 
                               for j in range(args.num_images_per_prompt)]
            check_file_list.append(prompt_json)
            if all([osp.exists(f) for f in check_file_list]):
                print(f"Skipping prompt {i}: \"{prompt.prompt_text}\"")
                continue
        
        # =========================== generate image =========================
        print(f"Processing prompt {i}: \"{prompt.prompt_text}\"")
        if not osp.isdir(sub_dir):
            os.makedirs(sub_dir, exist_ok=True)
        
        with open(prompt_json, "w") as f:
            json.dump(prompt._asdict(), f)

        images = pipe(
            prompt=prompt.prompt_text, 
            num_inference_steps=args.num_inference_steps,
            generator=generator
        ).images

        for j, image in enumerate(images):
            save_path = osp.join(sub_dir, f"{j:0>2d}.png")
            image.save(save_path)
            print(f"Generated image: {save_path}")


if __name__ == "__main__":
    main()