data_process.py 8.16 KB
Newer Older
liugh5's avatar
liugh5 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import logging
import os
import sys
import argparse
import yaml
import time
import codecs

ROOT_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))  # NOQA: E402
sys.path.insert(0, os.path.dirname(ROOT_PATH))  # NOQA: E402

try:
    from kantts.preprocess.audio_processor.audio_processor import AudioProcessor
    from kantts.preprocess.se_processor.se_processor import SpeakerEmbeddingProcessor
    from kantts.preprocess.script_convertor.TextScriptConvertor import (
        TextScriptConvertor,
    )
    from kantts.preprocess.fp_processor import FpProcessor, is_fp_line
    from kantts.preprocess.languages import languages
    from kantts.datasets.dataset import AM_Dataset, Voc_Dataset
    from kantts.utils.log import logging_to_file, get_git_revision_hash
except ImportError:
    raise ImportError("Please install kantts.")

logging.basicConfig(
    format="%(asctime)s,%(msecs)d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
    datefmt="%Y-%m-%d:%H:%M:%S",
    level=logging.INFO,
)

LANGUAGES_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "languages")


def gen_metafile(
    voice_output_dir,
    fp_enable=False,
    badlist=None,
    split_ratio=0.98,
):

    voc_train_meta = os.path.join(voice_output_dir, "train.lst")
    voc_valid_meta = os.path.join(voice_output_dir, "valid.lst")
    if not os.path.exists(voc_train_meta) or not os.path.exists(voc_valid_meta):
        Voc_Dataset.gen_metafile(
            os.path.join(voice_output_dir, "wav"),
            voice_output_dir,
            split_ratio,
        )
        logging.info("Voc metafile generated.")

    raw_metafile = os.path.join(voice_output_dir, "raw_metafile.txt")
    am_train_meta = os.path.join(voice_output_dir, "am_train.lst")
    am_valid_meta = os.path.join(voice_output_dir, "am_valid.lst")
    if not os.path.exists(am_train_meta) or not os.path.exists(am_valid_meta):
        AM_Dataset.gen_metafile(
            raw_metafile,
            voice_output_dir,
            am_train_meta,
            am_valid_meta,
            badlist,
            split_ratio,
        )
        logging.info("AM metafile generated.")

    if fp_enable:
        fpadd_metafile = os.path.join(voice_output_dir, "fpadd_metafile.txt")
        am_train_meta = os.path.join(voice_output_dir, "am_fpadd_train.lst")
        am_valid_meta = os.path.join(voice_output_dir, "am_fpadd_valid.lst")
        if not os.path.exists(am_train_meta) or not os.path.exists(am_valid_meta):
            AM_Dataset.gen_metafile(
                fpadd_metafile,
                voice_output_dir,
                am_train_meta,
                am_valid_meta,
                badlist,
                split_ratio,
            )
            logging.info("AM fpaddmetafile generated.")

        fprm_metafile = os.path.join(voice_output_dir, "fprm_metafile.txt")
        am_train_meta = os.path.join(voice_output_dir, "am_fprm_train.lst")
        am_valid_meta = os.path.join(voice_output_dir, "am_fprm_valid.lst")
        if not os.path.exists(am_train_meta) or not os.path.exists(am_valid_meta):
            AM_Dataset.gen_metafile(
                fprm_metafile,
                voice_output_dir,
                am_train_meta,
                am_valid_meta,
                badlist,
                split_ratio,
            )
            logging.info("AM fprmmetafile generated.")


#  TODO: Zh-CN as default
def process_data(
    voice_input_dir,
    voice_output_dir,
    audio_config,
    speaker_name=None,
    targetLang="PinYin",
    skip_script=False,
    se_model=None,
):
    foreignLang = "EnUS"

    # check if the vocie is supported
    if not os.path.exists(os.path.join(voice_input_dir, "emotion_tag.txt")):
        emo_tag_path = None
    else:
        emo_tag_path = os.path.join(voice_input_dir, "emotion_tag.txt")

    phoneset_path = os.path.join(
        LANGUAGES_DIR, targetLang, languages[targetLang]["phoneset_path"]
    )
    posset_path = os.path.join(
        LANGUAGES_DIR, targetLang, languages[targetLang]["posset_path"]
    )
    f2t_map_path = os.path.join(
        LANGUAGES_DIR, targetLang, languages[targetLang]["f2t_map_path"]
    )
    s2p_map_path = os.path.join(
        LANGUAGES_DIR, targetLang, languages[targetLang]["s2p_map_path"]
    )

    # dir of plain text/sentences for training byte based model
    plain_text_dir = os.path.join(voice_input_dir, "text")

    if speaker_name is None:
        speaker_name = os.path.basename(voice_input_dir)

    if audio_config is not None:
        with open(audio_config, "r") as f:
            config = yaml.load(f, Loader=yaml.Loader)

    config["create_time"] = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
    config["git_revision_hash"] = get_git_revision_hash()

    se_enable = config["audio_config"].get("se_feature", False)

    with open(os.path.join(voice_output_dir, "audio_config.yaml"), "w") as f:
        yaml.dump(config, f, Dumper=yaml.Dumper, default_flow_style=None)

    if skip_script:
        logging.info("Skip script conversion")
    raw_metafile = None
    #  Script processor
    if not skip_script:
        if os.path.exists(plain_text_dir):
            TextScriptConvertor.turn_text_into_bytes(
                os.path.join(plain_text_dir, "text.txt"),
                os.path.join(voice_output_dir, "raw_metafile.txt"),
                speaker_name,
            )
            fp_enable = False
        else:
            tsc = TextScriptConvertor(
                phoneset_path,
                posset_path,
                targetLang,
                foreignLang,
                f2t_map_path,
                s2p_map_path,
                emo_tag_path,
                speaker_name,
            )
            tsc.process(
                os.path.join(voice_input_dir, "prosody", "prosody.txt"),
                os.path.join(voice_output_dir, "Script.xml"),
                os.path.join(voice_output_dir, "raw_metafile.txt"),
            )
            prosody = os.path.join(voice_input_dir, "prosody", "prosody.txt")
            # FP processor
            with codecs.open(prosody, "r", "utf-8") as f:
                lines = f.readlines()
                fp_enable = is_fp_line(lines[1])
        raw_metafile = os.path.join(voice_output_dir, "raw_metafile.txt")

    if fp_enable:
        FP = FpProcessor()

        FP.process(
            voice_output_dir,
            prosody,
            raw_metafile,
        )
        logging.info("Processing fp done.")

    #  Audio processor
    ap = AudioProcessor(config["audio_config"])
    ap.process(
        voice_input_dir,
        voice_output_dir,
        raw_metafile,
    )
    logging.info("Processing audio done.")

    #  SpeakerEmbedding processor
    if se_enable:
        sep = SpeakerEmbeddingProcessor()
        sep.process(
            voice_output_dir,
            se_model,
        )
        logging.info("Processing speaker embedding done.")

    logging.info("Processing done.")

    # Generate Voc&AM metafile
    # TODO: train/valid ratio setting
    gen_metafile(voice_output_dir, fp_enable, ap.badcase_list)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Dataset preprocessor")
    parser.add_argument("--voice_input_dir", type=str, required=True)
    parser.add_argument("--voice_output_dir", type=str, required=True)
    parser.add_argument("--audio_config", type=str, required=True)
    parser.add_argument("--speaker", type=str, default=None, help="speaker")
    parser.add_argument("--lang", type=str, default="PinYin", help="target language")
    parser.add_argument(
        "--se_model",
        type=str,
        default="../pre_data/speaker_embeddding/se.*",
        help="speaker embedding extractor model",
    )
    parser.add_argument(
        "--skip_script", action="store_true", help="skip script converting"
    )
    args = parser.parse_args()

    os.makedirs(args.voice_output_dir, exist_ok=True)
    logging_to_file(os.path.join(args.voice_output_dir, "data_process_stdout.log"))

    try:
        process_data(
            args.voice_input_dir,
            args.voice_output_dir,
            args.audio_config,
            args.speaker,
            args.lang,
            args.skip_script,
            args.se_model,
        )
    except (Exception, KeyboardInterrupt) as e:
        logging.error(e, exc_info=True)