ling_unit.py 15.5 KB
Newer Older
liugh5's avatar
liugh5 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import abc
import os
import shutil
import re
import numpy as np

from . import cleaners as cleaners
from .emotion_types import emotion_types
from .lang_symbols import get_language_symbols

# Regular expression matching text enclosed in curly braces:
_curly_re = re.compile(r"(.*?)\{(.+?)\}(.*)")


def _clean_text(text, cleaner_names):
    for name in cleaner_names:
        cleaner = getattr(cleaners, name)
        if not cleaner:
            raise Exception("Unknown cleaner: %s" % name)
        text = cleaner(text)
    return text


def get_fpdict(config):
    # eomtion_neutral(F7) can be other emotion(speaker) types in the corresponding list in config file.
    default_sp = config["linguistic_unit"]["speaker_list"].split(",")[0]
    en_sy = f"{{ge$tone5$s_begin$word_begin$emotion_neutral${default_sp}}} {{en_c$tone5$s_end$word_end$emotion_neutral${default_sp}}} {{#3$tone_none$s_none$word_none$emotion_neutral${default_sp}}}"  # NOQA: E501
    a_sy = f"{{ga$tone5$s_begin$word_begin$emotion_neutral${default_sp}}} {{a_c$tone5$s_end$word_end$emotion_neutral${default_sp}}} {{#3$tone_none$s_none$word_none$emotion_neutral${default_sp}}}"  # NOQA: E501
    e_sy = f"{{ge$tone5$s_begin$word_begin$emotion_neutral${default_sp}}} {{e_c$tone5$s_end$word_end$emotion_neutral${default_sp}}} {{#3$tone_none$s_none$word_none$emotion_neutral${default_sp}}}"  # NOQA: E501
    ling_unit = KanTtsLinguisticUnit(config)

    en_lings = ling_unit.encode_symbol_sequence(en_sy)
    a_lings = ling_unit.encode_symbol_sequence(a_sy)
    e_lings = ling_unit.encode_symbol_sequence(e_sy)

    en_ling = np.stack(en_lings, axis=1)[:3, :4]
    a_ling = np.stack(a_lings, axis=1)[:3, :4]
    e_ling = np.stack(e_lings, axis=1)[:3, :4]

    fp_dict = {1: en_ling, 2: a_ling, 3: e_ling}
    return fp_dict


class LinguisticBaseUnit(abc.ABC):
    def set_config_params(self, config_params):
        self.config_params = config_params

    def save(self, config, config_name, path):
        """Save config to file"""
        t_path = os.path.join(path, config_name)
        if config != t_path:
            os.makedirs(path, exist_ok=True)
            shutil.copyfile(config, os.path.join(path, config_name))


class KanTtsLinguisticUnit(LinguisticBaseUnit):
    def __init__(self, config):
        super(KanTtsLinguisticUnit, self).__init__()

        # special symbol
        self._pad = "_"
        self._eos = "~"
        self._mask = "@[MASK]"

        self.unit_config = config["linguistic_unit"]
        self.lang_type = self.unit_config.get("language", "PinYin")
        (
            self.lang_phones,
            self.lang_tones,
            self.lang_syllable_flags,
            self.lang_word_segments,
        ) = get_language_symbols(self.lang_type)

        self._cleaner_names = [
            x.strip() for x in self.unit_config["cleaners"].split(",")
        ]
        _lfeat_type_list = self.unit_config["lfeat_type_list"].strip().split(",")
        self._lfeat_type_list = _lfeat_type_list

        self.fp_enable = config["Model"]["KanTtsSAMBERT"]["params"].get("FP", False)
        if self.fp_enable:
            self._fpadd_lfeat_type_list = [_lfeat_type_list[0], _lfeat_type_list[4]]

        self.build()

    def using_byte(self):
        return "byte_index" in self._lfeat_type_list

    def get_unit_size(self):
        ling_unit_size = {}
        if self.using_byte():
            ling_unit_size["byte_index"] = len(self.byte_index)
        else:
            ling_unit_size["sy"] = len(self.sy)
            ling_unit_size["tone"] = len(self.tone)
            ling_unit_size["syllable_flag"] = len(self.syllable_flag)
            ling_unit_size["word_segment"] = len(self.word_segment)

        if "emo_category" in self._lfeat_type_list:
            ling_unit_size["emotion"] = len(self.emo_category)
        if "speaker_category" in self._lfeat_type_list:
            ling_unit_size["speaker"] = len(self.speaker)

        return ling_unit_size

    def build(self):

        self._sub_unit_dim = {}
        self._sub_unit_pad = {}
        if self.using_byte():
            # Export all byte indices:
            self.byte_index = ["@" + str(idx) for idx in range(256)] + [
                self._pad,
                self._eos,
                self._mask,
            ]
            self._byte_index_to_id = {s: i for i, s in enumerate(self.byte_index)}
            self._id_to_byte_index = {i: s for i, s in enumerate(self.byte_index)}
            self._sub_unit_dim["byte_index"] = len(self.byte_index)
            self._sub_unit_pad["byte_index"] = self._byte_index_to_id["_"]
        else:
            # sy sub-unit
            _characters = ""

            # Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters):
            # _arpabet = ['@' + s for s in cmudict.valid_symbols]
            _arpabet = ["@" + s for s in self.lang_phones]

            # Export all symbols:
            self.sy = list(_characters) + _arpabet + [self._pad, self._eos, self._mask]
            self._sy_to_id = {s: i for i, s in enumerate(self.sy)}
            self._id_to_sy = {i: s for i, s in enumerate(self.sy)}
            self._sub_unit_dim["sy"] = len(self.sy)
            self._sub_unit_pad["sy"] = self._sy_to_id["_"]

            # tone sub-unit
            _characters = ""

            # Export all tones:
            self.tone = (
                list(_characters) + self.lang_tones + [self._pad, self._eos, self._mask]
            )
            self._tone_to_id = {s: i for i, s in enumerate(self.tone)}
            self._id_to_tone = {i: s for i, s in enumerate(self.tone)}
            self._sub_unit_dim["tone"] = len(self.tone)
            self._sub_unit_pad["tone"] = self._tone_to_id["_"]

            # syllable flag sub-unit
            _characters = ""

            # Export all syllable_flags:
            self.syllable_flag = (
                list(_characters)
                + self.lang_syllable_flags
                + [self._pad, self._eos, self._mask]
            )
            self._syllable_flag_to_id = {s: i for i, s in enumerate(self.syllable_flag)}
            self._id_to_syllable_flag = {i: s for i, s in enumerate(self.syllable_flag)}
            self._sub_unit_dim["syllable_flag"] = len(self.syllable_flag)
            self._sub_unit_pad["syllable_flag"] = self._syllable_flag_to_id["_"]

            # word segment sub-unit
            _characters = ""

            # Export all syllable_flags:
            self.word_segment = (
                list(_characters)
                + self.lang_word_segments
                + [self._pad, self._eos, self._mask]
            )
            self._word_segment_to_id = {s: i for i, s in enumerate(self.word_segment)}
            self._id_to_word_segment = {i: s for i, s in enumerate(self.word_segment)}
            self._sub_unit_dim["word_segment"] = len(self.word_segment)
            self._sub_unit_pad["word_segment"] = self._word_segment_to_id["_"]

        if "emo_category" in self._lfeat_type_list:
            # emotion category sub-unit
            _characters = ""

            self.emo_category = (
                list(_characters) + emotion_types + [self._pad, self._eos, self._mask]
            )
            self._emo_category_to_id = {s: i for i, s in enumerate(self.emo_category)}
            self._id_to_emo_category = {i: s for i, s in enumerate(self.emo_category)}
            self._sub_unit_dim["emo_category"] = len(self.emo_category)
            self._sub_unit_pad["emo_category"] = self._emo_category_to_id["_"]

        if "speaker_category" in self._lfeat_type_list:
            # speaker category sub-unit
            _characters = ""

            _ch_speakers = self.unit_config["speaker_list"].strip().split(",")

            # Export all syllable_flags:
            self.speaker = (
                list(_characters) + _ch_speakers + [self._pad, self._eos, self._mask]
            )
            self._speaker_to_id = {s: i for i, s in enumerate(self.speaker)}
            self._id_to_speaker = {i: s for i, s in enumerate(self.speaker)}
            self._sub_unit_dim["speaker_category"] = len(self._speaker_to_id)
            self._sub_unit_pad["speaker_category"] = self._speaker_to_id["_"]

    def encode_symbol_sequence(self, lfeat_symbol):
        lfeat_symbol = lfeat_symbol.strip().split(" ")

        lfeat_symbol_separate = [""] * int(len(self._lfeat_type_list))
        for this_lfeat_symbol in lfeat_symbol:
            this_lfeat_symbol = this_lfeat_symbol.strip("{").strip("}").split("$")
            #  if len(this_lfeat_symbol) > len(self._lfeat_type_list):
            #    raise Exception(
            #        'Length of this_lfeat_symbol in training data is longer than the length of lfeat_type_list, '\
            #                + str( len(this_lfeat_symbol))\
            #                + ' VS. '\
            #                + str(len(self._lfeat_type_list)))
            index = 0
            while index < len(lfeat_symbol_separate):
                lfeat_symbol_separate[index] = (
                    lfeat_symbol_separate[index] + this_lfeat_symbol[index] + " "
                )
                index = index + 1

        input_and_label_data = []
        index = 0
        while index < len(self._lfeat_type_list):
            sequence = self.encode_sub_unit(
                lfeat_symbol_separate[index].strip(), self._lfeat_type_list[index]
            )
            sequence_array = np.asarray(sequence, dtype=np.int32)
            input_and_label_data.append(sequence_array)
            index = index + 1

        # # lfeat_type = 'emo_category'
        # input_and_label_data.append(lfeat_symbol_separate[index].strip())
        # index = index + 1
        #
        # # lfeat_type = 'speaker'
        # input_and_label_data.append(lfeat_symbol_separate[index].strip())

        return input_and_label_data

    def decode_symbol_sequence(self, sequence):
        result = []
        for i, lfeat_type in enumerate(self._lfeat_type_list):
            s = ""
            sequence_item = sequence[i].tolist()
            if lfeat_type == "sy":
                s = self.decode_sy(sequence_item)
            elif lfeat_type == "byte_index":
                s = self.decode_byte_index(sequence_item)
            elif lfeat_type == "tone":
                s = self.decode_tone(sequence_item)
            elif lfeat_type == "syllable_flag":
                s = self.decode_syllable_flag(sequence_item)
            elif lfeat_type == "word_segment":
                s = self.decode_word_segment(sequence_item)
            elif lfeat_type == "emo_category":
                s = self.decode_emo_category(sequence_item)
            elif lfeat_type == "speaker_category":
                s = self.decode_speaker_category(sequence_item)
            else:
                raise Exception("Unknown lfeat type: %s" % lfeat_type)
            result.append("%s:%s" % (lfeat_type, s))

        return result

    def encode_sub_unit(self, this_lfeat_symbol, lfeat_type):
        sequence = []
        if lfeat_type == "sy":
            this_lfeat_symbol = this_lfeat_symbol.strip().split(" ")
            this_lfeat_symbol_format = ""
            index = 0
            while index < len(this_lfeat_symbol):
                this_lfeat_symbol_format = (
                    this_lfeat_symbol_format
                    + "{"
                    + this_lfeat_symbol[index]
                    + "}"
                    + " "
                )
                index = index + 1
            sequence = self.encode_text(this_lfeat_symbol_format, self._cleaner_names)
        elif lfeat_type == "byte_index":
            sequence = self.encode_byte_index(this_lfeat_symbol)
        elif lfeat_type == "tone":
            sequence = self.encode_tone(this_lfeat_symbol)
        elif lfeat_type == "syllable_flag":
            sequence = self.encode_syllable_flag(this_lfeat_symbol)
        elif lfeat_type == "word_segment":
            sequence = self.encode_word_segment(this_lfeat_symbol)
        elif lfeat_type == "emo_category":
            sequence = self.encode_emo_category(this_lfeat_symbol)
        elif lfeat_type == "speaker_category":
            sequence = self.encode_speaker_category(this_lfeat_symbol)
        else:
            raise Exception("Unknown lfeat type: %s" % lfeat_type)

        return sequence

    def encode_text(self, text, cleaner_names):
        sequence = []

        # Check for curly braces and treat their contents as ARPAbet:
        while len(text):
            m = _curly_re.match(text)
            if not m:
                sequence += self.encode_sy(_clean_text(text, cleaner_names))
                break
            sequence += self.encode_sy(_clean_text(m.group(1), cleaner_names))
            sequence += self.encode_arpanet(m.group(2))
            text = m.group(3)

        # Append EOS token
        sequence.append(self._sy_to_id["~"])
        return sequence

    def encode_sy(self, sy):
        return [self._sy_to_id[s] for s in sy if self.should_keep_sy(s)]

    def decode_sy(self, id):
        s = self._id_to_sy[id]
        if len(s) > 1 and s[0] == "@":
            s = s[1:]
        return s

    def should_keep_sy(self, s):
        return s in self._sy_to_id and s != "_" and s != "~"

    def encode_arpanet(self, text):
        return self.encode_sy(["@" + s for s in text.split()])

    def encode_byte_index(self, byte_index):
        byte_indices = ["@" + s for s in byte_index.strip().split(" ")]
        sequence = []
        for this_byte_index in byte_indices:
            sequence.append(self._byte_index_to_id[this_byte_index])
        sequence.append(self._byte_index_to_id["~"])
        return sequence

    def decode_byte_index(self, id):
        s = self._id_to_byte_index[id]
        if len(s) > 1 and s[0] == "@":
            s = s[1:]
        return s

    def encode_tone(self, tone):
        tones = tone.strip().split(" ")
        sequence = []
        for this_tone in tones:
            sequence.append(self._tone_to_id[this_tone])
        sequence.append(self._tone_to_id["~"])
        return sequence

    def decode_tone(self, id):
        return self._id_to_tone[id]

    def encode_syllable_flag(self, syllable_flag):
        syllable_flags = syllable_flag.strip().split(" ")
        sequence = []
        for this_syllable_flag in syllable_flags:
            sequence.append(self._syllable_flag_to_id[this_syllable_flag])
        sequence.append(self._syllable_flag_to_id["~"])
        return sequence

    def decode_syllable_flag(self, id):
        return self._id_to_syllable_flag[id]

    def encode_word_segment(self, word_segment):
        word_segments = word_segment.strip().split(" ")
        sequence = []
        for this_word_segment in word_segments:
            sequence.append(self._word_segment_to_id[this_word_segment])
        sequence.append(self._word_segment_to_id["~"])
        return sequence

    def decode_word_segment(self, id):
        return self._id_to_word_segment[id]

    def encode_emo_category(self, emo_type):
        emo_categories = emo_type.strip().split(" ")
        sequence = []
        for this_category in emo_categories:
            sequence.append(self._emo_category_to_id[this_category])
        sequence.append(self._emo_category_to_id["~"])
        return sequence

    def decode_emo_category(self, id):
        return self._id_to_emo_category[id]

    def encode_speaker_category(self, speaker):
        speakers = speaker.strip().split(" ")
        sequence = []
        for this_speaker in speakers:
            sequence.append(self._speaker_to_id[this_speaker])
        sequence.append(self._speaker_to_id["~"])
        return sequence

    def decode_speaker_category(self, id):
        return self._id_to_speaker[id]