trainer.py 45.3 KB
Newer Older
liugh5's avatar
liugh5 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
import os
import sys
import logging
import torch
from collections import defaultdict
from tensorboardX import SummaryWriter
from tqdm import tqdm
import soundfile as sf
import numpy as np

from kantts.utils.plot import plot_spectrogram, plot_alignment


def traversal_dict(d, func):
    if not isinstance(d, dict):
        logging.error("Not a dict: {}".format(d))
        return
    for k, v in d.items():
        if isinstance(v, dict):
            traversal_dict(v, func)
        else:
            func(k, v)


def distributed_init():
    world_size = int(os.environ.get("WORLD_SIZE", 1))
    local_rank = int(os.environ.get("RANK", 0))
    distributed = world_size > 1
    device = torch.device("cuda", local_rank)
    if distributed:
        torch.distributed.init_process_group(backend="nccl", init_method="env://")
        logging.info(
            "Distributed training, global world size: {}, local world size: {}, global rank: {}, local rank: {}".format(
                world_size,
                torch.cuda.device_count(),
                torch.distributed.get_rank(),
                local_rank,
            )
        )
        logging.info("nccl backend: {}".format(torch.distributed.is_nccl_available()))
        logging.info("mpi backend: {}".format(torch.distributed.is_mpi_available()))
        device_ids = list(range(torch.cuda.device_count()))
        logging.info(
            "[{}] rank = {}, world_size = {}, n_gpus = {}, device_ids = {}".format(
                os.getpid(),
                torch.distributed.get_rank(),
                torch.distributed.get_world_size(),
                torch.cuda.device_count(),
                device_ids,
            )
        )
    return distributed, device, local_rank, world_size


class Trainer(object):
    def __init__(
        self,
        config,
        model,
        optimizer,
        scheduler,
        criterion,
        device,
        sampler,
        train_loader,
        valid_loader,
        max_epochs=None,
        max_steps=None,
        save_dir=None,
        save_interval=1,
        valid_interval=1,
        log_interval=10,
        grad_clip=None,
    ):
        self.model = model
        self.optimizer = optimizer
        self.scheduler = scheduler
        self.criterion = criterion
        self.device = device
        self.sampler = sampler
        self.train_loader = train_loader
        self.valid_loader = valid_loader
        self.max_epochs = max_epochs
        self.steps = 1
        self.epoch = 0
        self.save_dir = save_dir
        self.save_interval = save_interval
        self.valid_interval = valid_interval
        self.log_interval = log_interval
        self.grad_clip = grad_clip
        self.total_train_loss = defaultdict(float)
        self.total_eval_loss = defaultdict(float)
        self.config = config
        self.distributed = self.config.get("distributed", False)
        self.rank = self.config.get("rank", 0)

        self.log_dir = os.path.join(save_dir, "log")
        self.ckpt_dir = os.path.join(save_dir, "ckpt")
        os.makedirs(self.log_dir, exist_ok=True)
        os.makedirs(self.ckpt_dir, exist_ok=True)

        self.writer = SummaryWriter(self.log_dir)

        if max_epochs is None:
            self.max_epochs = sys.maxsize
        else:
            self.max_epochs = int(max_epochs)
        if max_steps is None:
            self.max_steps = sys.maxsize
        else:
            self.max_steps = int(max_steps)

        self.finish_training = False

    def set_model_state(self, state="train"):
        if state == "train":
            if isinstance(self.model, dict):
                for key in self.model.keys():
                    self.model[key].train()
            else:
                self.model.train()
        elif state == "eval":
            if isinstance(self.model, dict):
                for key in self.model.keys():
                    self.model[key].eval()
            else:
                self.model.eval()
        else:
            raise ValueError("state must be either 'train' or 'eval'.")

    def write_to_tensorboard(self, loss):
        """Write to tensorboard."""
        for key, value in loss.items():
            self.writer.add_scalar(key, value, self.steps)

    #  FIXME: an example for simple feedforward model
    def save_checkpoint(self, checkpoint_path):
        state_dict = {
            "optimizer": self.optimizer.state_dict(),
            "scheduler": self.scheduler.state_dict(),
            "steps": self.steps,
            "model": self.model.state_dict(),
        }

        #  TODO: distributed training
        if not os.path.exists(checkpoint_path):
            os.makedirs(os.path.dirname(checkpoint_path))
        torch.save(state_dict, checkpoint_path)

    def load_checkpoint(
        self, checkpoint_path, restore_training_state=False, strict=True
    ):
        state_dict = torch.load(checkpoint_path)
        self.model.load_state_dict(state_dict["model"], strict=strict)
        if restore_training_state:
            if "optimizer" in state_dict:
                self.optimizer["KanTtsSAMBERT"].load_state_dict(state_dict["optimizer"])
            if "scheduler" in state_dict:
                self.scheduler["KanTtsSAMBERT"].load_state_dict(state_dict["scheduler"])
            if "steps" in state_dict:
                self.steps = state_dict["steps"]

    #  TODO
    def check_save_interval(self):
        if self.ckpt_dir is not None and (self.steps) % self.save_interval == 0:
            self.save_checkpoint(
                os.path.join(self.ckpt_dir, "checkpoint_{}.pth".format(self.steps))
            )
            logging.info("Checkpoint saved at step {}".format(self.steps))

    def check_log_interval(self):
        if self.writer is not None and (self.steps) % self.log_interval == 0:
            for key in self.total_train_loss.keys():
                self.total_train_loss[key] /= self.config["log_interval_steps"]
                logging.info(
                    f"(Steps: {self.steps}) {key} = {self.total_train_loss[key]:.4f}."
                )
            self.write_to_tensorboard(self.total_train_loss)
            self.total_train_loss = defaultdict(float)

            def log_learning_rate(key, sche):
                logging.info("{} learning rate: {:.6f}".format(key, sche.get_lr()[0]))
                self.write_to_tensorboard({"{}_lr".format(key): sche.get_lr()[0]})

            traversal_dict(self.scheduler, log_learning_rate)

    def check_eval_interval(self):
        if self.valid_interval > 0 and (self.steps) % self.valid_interval == 0:
            self.eval_epoch()

    def check_stop_training(self):
        if self.steps >= self.max_steps or self.epoch >= self.max_epochs:
            self.finish_training = True

    def train(self):
        self.set_model_state("train")

        while True:
            self.train_epoch()
            self.epoch += 1
            self.check_stop_training()
            if self.finish_training:
                break

    def train_epoch(self):
        for batch in tqdm(self.train_loader):
            self.train_step(batch)

            if self.rank == 0:
                self.check_eval_interval()
                self.check_save_interval()
                self.check_log_interval()

            self.steps += 1
            self.check_stop_training()
            if self.finish_training:
                break

        logging.info("Epoch {} finished".format(self.epoch))

        if self.distributed:
            self.sampler["train"].set_epoch(self.epoch)

    #  TODO: implement train_step() for specific model
    def train_step(self, batch):
        data, target = batch
        data, target = data.to(self.device), target.to(self.device)
        self.optimizer.zero_grad()
        output = self.model(data)
        loss = self.criterion(output, target)
        loss.backward()
        if self.grad_clip is not None:
            torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_clip)
        self.optimizer.step()

    #  TODO: implement eval_epoch() for specific model
    @torch.no_grad()
    def eval_step(self, batch):
        pass

    def eval_epoch(self):
        logging.info(f"(Epoch: {self.epoch}) Start evaluation.")
        # change mode
        self.set_model_state("eval")

        self.total_eval_loss = defaultdict(float)
        #  TODO: save some intermidiate results
        rand_idx = np.random.randint(0, len(self.valid_loader))
        idx = 0
        logging.info("Valid data size: {}".format(len(self.valid_loader)))
        for batch in tqdm(self.valid_loader):
            self.eval_step(batch)
            if idx == rand_idx:
                logging.info(
                    f"(Epoch: {self.epoch}) Random batch: {idx}, generating image."
                )
                self.genearete_and_save_intermediate_result(batch)
            idx += 1

        for key in self.total_eval_loss.keys():
            self.total_eval_loss[key] /= idx + 1
            logging.info(
                f"(Steps: {self.steps}) {key} = {self.total_eval_loss[key]:.4f}."
            )
        self.write_to_tensorboard(self.total_eval_loss)

        logging.info("Epoch {} evaluation finished".format(self.epoch))

        self.set_model_state("train")

    @torch.no_grad()
    def genearete_and_save_intermediate_result(self, batch):
        pass


class GAN_Trainer(Trainer):
    def __init__(
        self,
        config,
        model,
        optimizer,
        scheduler,
        criterion,
        device,
        sampler,
        train_loader,
        valid_loader,
        max_epochs=None,
        max_steps=None,
        save_dir=None,
        save_interval=1,
        valid_interval=1,
        log_interval=10,
        grad_clip=None,
    ):
        super().__init__(
            config,
            model,
            optimizer,
            scheduler,
            criterion,
            device,
            sampler,
            train_loader,
            valid_loader,
            max_epochs,
            max_steps,
            save_dir,
            save_interval,
            valid_interval,
            log_interval,
            grad_clip,
        )

    def set_model_state(self, state="train"):
        if state == "train":
            if isinstance(self.model, dict):
                self.model["generator"].train()
                for key in self.model["discriminator"].keys():
                    self.model["discriminator"][key].train()
            else:
                self.model.train()
        elif state == "eval":
            if isinstance(self.model, dict):
                self.model["generator"].eval()
                for key in self.model["discriminator"].keys():
                    self.model["discriminator"][key].eval()
            else:
                self.model.eval()
        else:
            raise ValueError("state must be either 'train' or 'eval'.")

    @torch.no_grad()
    def genearete_and_save_intermediate_result(self, batch):
        """Generate and save intermediate result."""
        # delayed import to avoid error related backend error
        import matplotlib.pyplot as plt

        # generate
        y_batch, x_batch = batch
        y_batch, x_batch = y_batch.to(self.device), x_batch.to(self.device)
        y_batch_ = self.model["generator"](x_batch)
        if self.model.get("pqmf", None):
            y_mb_ = y_batch_
            y_batch_ = self.model["pqmf"].synthesis(y_mb_)

        # check directory
        dirname = os.path.join(self.log_dir, f"predictions/{self.steps}steps")
        if not os.path.exists(dirname):
            os.makedirs(dirname)

        for idx, (y, y_) in enumerate(zip(y_batch, y_batch_), 1):
            # convert to ndarray
            y, y_ = y.view(-1).cpu().numpy(), y_.view(-1).cpu().numpy()

            # plot figure and save it
            figname = os.path.join(dirname, f"{idx}.png")
            plt.subplot(2, 1, 1)
            plt.plot(y)
            plt.title("groundtruth speech")
            plt.subplot(2, 1, 2)
            plt.plot(y_)
            plt.title(f"generated speech @ {self.steps} steps")
            plt.tight_layout()
            plt.savefig(figname)
            plt.close()

            # save as wavfile
            y = np.clip(y, -1, 1)
            y_ = np.clip(y_, -1, 1)
            sf.write(
                figname.replace(".png", "_ref.wav"),
                y,
                self.config["audio_config"]["sampling_rate"],
                "PCM_16",
            )
            sf.write(
                figname.replace(".png", "_gen.wav"),
                y_,
                self.config["audio_config"]["sampling_rate"],
                "PCM_16",
            )

            if idx >= self.config["num_save_intermediate_results"]:
                break

    @torch.no_grad()
    def eval_step(self, batch):
        y, x = batch
        y, x = y.to(self.device), x.to(self.device)

        y_ = self.model["generator"](x)
        # reconstruct the signal from multi-band signal
        if self.model.get("pqmf", None):
            y_mb_ = y_
            y_ = self.model["pqmf"].synthesis(y_mb_)

        aux_loss = 0.0

        # multi-resolution sfft loss
        if self.criterion.get("stft_loss", None):
            sc_loss, mag_loss = self.criterion["stft_loss"](y_, y)
            aux_loss += (sc_loss + mag_loss) * self.criterion["stft_loss"].weights
            self.total_eval_loss["eval/spectral_convergence_loss"] += sc_loss.item()

        # subband multi-resolution stft loss
        if self.criterion.get("subband_stft_loss", None):
            aux_loss *= 0.5  # for balancing with subband stft loss
            y_mb = self.model["pqmf"].analysis(y)
            sub_sc_loss, sub_mag_loss = self.criterion["sub_stft"](y_mb_, y_mb)
            self.total_eval_loss[
                "eval/sub_spectral_convergence_loss"
            ] += sub_sc_loss.item()
            self.total_eval_loss[
                "eval/sub_log_stft_magnitude_loss"
            ] += sub_mag_loss.item()
            aux_loss += (
                0.5 * (sub_sc_loss + sub_mag_loss) * self.criterion["sub_stft"].weights
            )

        # mel spectrogram loss
        if self.criterion.get("mel_loss", None):
            mel_loss = self.criterion["mel_loss"](y_, y)
            aux_loss += mel_loss * self.criterion["mel_loss"].weights
            self.total_eval_loss["eval/mel_loss"] += mel_loss.item()

        fmap_lst_ = []
        adv_loss = 0.0
        #  adversiral loss
        for discriminator in self.model["discriminator"].keys():
            p_, fmap_ = self.model["discriminator"][discriminator](y_)
            fmap_lst_.append(fmap_)
            adv_loss += (
                self.criterion["generator_adv_loss"](p_)
                * self.criterion["generator_adv_loss"].weights
            )

        gen_loss = aux_loss + adv_loss

        if self.criterion.get("feat_match_loss", None):
            fmap_lst = []
            # no need to track gradients
            #  TODO: implement feature matching loss
            for discriminator in self.model["discriminator"].keys():
                with torch.no_grad():
                    p, fmap = self.model["discriminator"][discriminator](y)
                    fmap_lst.append(fmap)

            fm_loss = 0.0
            for fmap_, fmap in zip(fmap_lst, fmap_lst_):
                fm_loss += self.criterion["feat_match_loss"](fmap_, fmap)
            self.total_eval_loss["eval/feature_matching_loss"] += fm_loss.item()

            gen_loss += fm_loss * self.criterion["feat_match_loss"].weights

        dis_loss = 0.0
        for discriminator in self.model["discriminator"].keys():
            p, fmap = self.model["discriminator"][discriminator](y)
            p_, fmap_ = self.model["discriminator"][discriminator](y_.detach())
            real_loss, fake_loss = self.criterion["discriminator_adv_loss"](p_, p)
            dis_loss += real_loss + fake_loss
            self.total_eval_loss["eval/real_loss"] += real_loss.item()
            self.total_eval_loss["eval/fake_loss"] += fake_loss.item()

        self.total_eval_loss["eval/discriminator_loss"] += dis_loss.item()
        self.total_eval_loss["eval/adversarial_loss"] += adv_loss.item()
        self.total_eval_loss["eval/generator_loss"] += gen_loss.item()

    def train_step(self, batch):
        y, x = batch
        y, x = y.to(self.device), x.to(self.device)

        if self.steps >= self.config.get("generator_train_start_steps", 0):
            y_ = self.model["generator"](x)
            # reconstruct the signal from multi-band signal
            if self.model.get("pqmf", None):
                y_mb_ = y_
                y_ = self.model["pqmf"].synthesis(y_mb_)

            # initialize
            gen_loss = 0.0

            # multi-resolution sfft loss
            if self.criterion.get("stft_loss", None):
                sc_loss, mag_loss = self.criterion["stft_loss"](y_, y)
                gen_loss += (sc_loss + mag_loss) * self.criterion["stft_loss"].weights
                self.total_train_loss[
                    "train/spectral_convergence_loss"
                ] += sc_loss.item()
                self.total_train_loss[
                    "train/log_stft_magnitude_loss"
                ] += mag_loss.item()

            # subband multi-resolution stft loss
            if self.criterion.get("subband_stft_loss", None):
                gen_loss *= 0.5  # for balancing with subband stft loss
                y_mb = self.model["pqmf"].analysis(y)
                sub_sc_loss, sub_mag_loss = self.criterion["sub_stft"](y_mb_, y_mb)
                gen_loss += 0.5 * (sub_sc_loss + sub_mag_loss)
                self.total_train_loss[
                    "train/sub_spectral_convergence_loss"
                ] += sub_sc_loss.item()
                self.total_train_loss[
                    "train/sub_log_stft_magnitude_loss"
                ] += sub_mag_loss.item()

            # mel spectrogram loss
            if self.criterion.get("mel_loss", None):
                mel_loss = self.criterion["mel_loss"](y_, y)
                gen_loss += mel_loss * self.criterion["mel_loss"].weights
                self.total_train_loss["train/mel_loss"] += mel_loss.item()

            # adversarial loss
            if self.steps > self.config["discriminator_train_start_steps"]:
                adv_loss = 0.0
                fmap_lst_ = []
                for discriminator in self.model["discriminator"].keys():
                    p_, fmap_ = self.model["discriminator"][discriminator](y_)
                    fmap_lst_.append(fmap_)
                    adv_loss += self.criterion["generator_adv_loss"](p_)
                    self.total_train_loss["train/adversarial_loss"] += adv_loss.item()

                gen_loss += adv_loss * self.criterion["generator_adv_loss"].weights

                # feature matching loss
                if self.criterion.get("feat_match_loss", None):
                    fmap_lst = []
                    # no need to track gradients
                    #  TODO: implement feature matching loss
                    for discriminator in self.model["discriminator"].keys():
                        with torch.no_grad():
                            p, fmap = self.model["discriminator"][discriminator](y)
                            fmap_lst.append(fmap)

                    fm_loss = 0.0
                    for fmap_, fmap in zip(fmap_lst, fmap_lst_):
                        fm_loss += self.criterion["feat_match_loss"](fmap_, fmap)
                    self.total_train_loss[
                        "train/feature_matching_loss"
                    ] += fm_loss.item()
                    gen_loss += fm_loss * self.criterion["feat_match_loss"].weights

            self.total_train_loss["train/generator_loss"] += gen_loss.item()
            # update generator
            self.optimizer["generator"].zero_grad()
            gen_loss.backward()
            if self.config["generator_grad_norm"] > 0:
                torch.nn.utils.clip_grad_norm_(
                    self.model["generator"].parameters(),
                    self.config["generator_grad_norm"],
                )
            self.optimizer["generator"].step()
            self.scheduler["generator"].step()

        # update discriminator
        if self.steps > self.config["discriminator_train_start_steps"]:
            # re-compute y_ which leads better quality
            with torch.no_grad():
                y_ = self.model["generator"](x)

            if self.model.get("pqmf", None):
                y_ = self.model["pqmf"].synthesis(y_)

            # discriminator loss
            dis_loss = 0.0
            for discriminator in self.model["discriminator"].keys():
                p, fmap = self.model["discriminator"][discriminator](y)
                p_, fmap_ = self.model["discriminator"][discriminator](y_.detach())
                real_loss, fake_loss = self.criterion["discriminator_adv_loss"](p_, p)
                dis_loss += real_loss + fake_loss
                self.total_train_loss["train/real_loss"] += real_loss.item()
                self.total_train_loss["train/fake_loss"] += fake_loss.item()

            self.total_train_loss["train/discriminator_loss"] += dis_loss.item()

            # update discriminator
            for key in self.optimizer["discriminator"].keys():
                self.optimizer["discriminator"][key].zero_grad()

            dis_loss.backward()
            if self.config["discriminator_grad_norm"] > 0:
                torch.nn.utils.clip_grad_norm_(
                    self.model["discriminator"].parameters(),
                    self.config["discriminator_grad_norm"],
                )
            for key in self.optimizer["discriminator"].keys():
                self.optimizer["discriminator"][key].step()
            for key in self.scheduler["discriminator"].keys():
                self.scheduler["discriminator"][key].step()

    def save_checkpoint(self, checkpoint_path):
        state_dict = {
            "optimizer": {
                "generator": self.optimizer["generator"].state_dict(),
                "discriminator": {},
            },
            "scheduler": {
                "generator": self.scheduler["generator"].state_dict(),
                "discriminator": {},
            },
            "steps": self.steps,
        }
        for model_name in self.optimizer["discriminator"].keys():
            state_dict["optimizer"]["discriminator"][model_name] = self.optimizer[
                "discriminator"
            ][model_name].state_dict()

        for model_name in self.scheduler["discriminator"].keys():
            state_dict["scheduler"]["discriminator"][model_name] = self.scheduler[
                "discriminator"
            ][model_name].state_dict()

        if not self.distributed:
            model_state = self.model["generator"].state_dict()
        else:
            model_state = self.model["generator"].module.state_dict()
        state_dict["model"] = {
            "generator": model_state,
            "discriminator": {},
        }
        for model_name in self.model["discriminator"].keys():
            if not self.distributed:
                model_state = self.model["discriminator"][model_name].state_dict()
            else:
                model_state = self.model["discriminator"][
                    model_name
                ].module.state_dict()
            state_dict["model"]["discriminator"][model_name] = model_state

        if not os.path.exists(os.path.dirname(checkpoint_path)):
            os.makedirs(os.path.dirname(checkpoint_path))
        torch.save(state_dict, checkpoint_path)

    def load_checkpoint(
        self, checkpoint_path, restore_training_state=False, strict=True
    ):
        state_dict = torch.load(checkpoint_path, map_location="cpu")
        if not self.distributed:
            self.model["generator"].load_state_dict(
                state_dict["model"]["generator"], strict=strict
            )
        else:
            self.model["generator"].module.load_state_dict(
                state_dict["model"]["generator"], strict=strict
            )
        for model_name in state_dict["model"]["discriminator"]:
            if not self.distributed:
                self.model["discriminator"][model_name].load_state_dict(
                    state_dict["model"]["discriminator"][model_name], strict=strict
                )
            else:
                self.model["discriminator"][model_name].module.load_state_dict(
                    state_dict["model"]["discriminator"][model_name], strict=strict
                )

        if restore_training_state:
            if "steps" in state_dict:
                self.steps = state_dict["steps"]
            if "optimizer" in state_dict:
                self.optimizer["generator"].load_state_dict(
                    state_dict["optimizer"]["generator"]
                )
                for model_name in state_dict["optimizer"]["discriminator"].keys():
                    self.optimizer["discriminator"][model_name].load_state_dict(
                        state_dict["optimizer"]["discriminator"][model_name]
                )
            if "scheduler" in state_dict:
                for model_name in state_dict["scheduler"]["discriminator"].keys():
                    self.scheduler["discriminator"][model_name].load_state_dict(
                        state_dict["scheduler"]["discriminator"][model_name]
                    )
                self.scheduler["generator"].load_state_dict(
                    state_dict["scheduler"]["generator"]
                )


class Sambert_Trainer(Trainer):
    def __init__(
        self,
        config,
        model,
        optimizer,
        scheduler,
        criterion,
        device,
        sampler,
        train_loader,
        valid_loader,
        max_epochs=None,
        max_steps=None,
        save_dir=None,
        save_interval=1,
        valid_interval=1,
        log_interval=10,
        grad_clip=None,
    ):
        super().__init__(
            config,
            model,
            optimizer,
            scheduler,
            criterion,
            device,
            sampler,
            train_loader,
            valid_loader,
            max_epochs,
            max_steps,
            save_dir,
            save_interval,
            valid_interval,
            log_interval,
            grad_clip,
        )
        self.with_MAS = config["Model"]["KanTtsSAMBERT"]["params"].get("MAS", False)
        self.fp_enable = config["Model"]["KanTtsSAMBERT"]["params"].get("FP", False)

    @torch.no_grad()
    def genearete_and_save_intermediate_result(self, batch):
        inputs_ling = batch["input_lings"].to(self.device)
        inputs_emotion = batch["input_emotions"].to(self.device)
        inputs_speaker = batch["input_speakers"].to(self.device)
        valid_input_lengths = batch["valid_input_lengths"].to(self.device)
        mel_targets = batch["mel_targets"].to(self.device)
        # generate mel spectrograms
        res = self.model["KanTtsSAMBERT"](
            inputs_ling[0:1],
            inputs_emotion[0:1],
            inputs_speaker[0:1],
            valid_input_lengths[0:1],
        )
        x_band_width = res["x_band_width"]
        h_band_width = res["h_band_width"]
        enc_slf_attn_lst = res["enc_slf_attn_lst"]
        pnca_x_attn_lst = res["pnca_x_attn_lst"]
        pnca_h_attn_lst = res["pnca_h_attn_lst"]
        dec_outputs = res["dec_outputs"]
        postnet_outputs = res["postnet_outputs"]

        dirname = os.path.join(self.log_dir, f"predictions/{self.steps}steps")
        if not os.path.exists(dirname):
            os.makedirs(dirname)

        for layer_id, slf_attn in enumerate(enc_slf_attn_lst):
            for head_id in range(
                self.config["Model"]["KanTtsSAMBERT"]["params"]["encoder_num_heads"]
            ):
                fig = plot_alignment(
                    slf_attn[
                        head_id, : valid_input_lengths[0], : valid_input_lengths[0]
                    ]
                    .cpu()
                    .numpy(),
                    info="valid_len_{}".format(valid_input_lengths[0].item()),
                )
                fig.savefig(
                    os.path.join(
                        dirname,
                        "enc_slf_attn_dev_layer{}_head{}".format(layer_id, head_id),
                    )
                )
        for layer_id, (pnca_x_attn, pnca_h_attn) in enumerate(
            zip(pnca_x_attn_lst, pnca_h_attn_lst)
        ):
            for head_id in range(
                self.config["Model"]["KanTtsSAMBERT"]["params"]["decoder_num_heads"]
            ):
                fig = plot_alignment(
                    pnca_x_attn[head_id, :, :].cpu().numpy(),
                    info="x_band_width_{}".format(x_band_width),
                )
                fig.savefig(
                    os.path.join(
                        dirname,
                        "pnca_x_attn_dev_layer{}_head{}".format(layer_id, head_id),
                    )
                )
                fig = plot_alignment(
                    pnca_h_attn[head_id, :, :].cpu().numpy(),
                    info="h_band_width_{}".format(h_band_width),
                )
                fig.savefig(
                    os.path.join(
                        dirname,
                        "pnca_h_attn_dev_layer{}_head{}".format(layer_id, head_id),
                    )
                )

        target_mel = mel_targets[0].cpu().numpy()
        coarse_mel = dec_outputs.squeeze(0).cpu().numpy()
        output_mel = postnet_outputs.squeeze(0).cpu().numpy()
        np.save(os.path.join(dirname, "coarse_mel.npy"), coarse_mel)
        np.save(os.path.join(dirname, "output_mel.npy"), output_mel)
        np.save(os.path.join(dirname, "target_mel.npy"), target_mel)
        fig = plot_spectrogram(coarse_mel.T)
        fig.savefig(os.path.join(dirname, "mel_dec_outputs"))
        fig = plot_spectrogram(output_mel.T)
        fig.savefig(os.path.join(dirname, "mel_postnet_outputs"))

    @torch.no_grad()
    def eval_step(self, batch):
        inputs_ling = batch["input_lings"].to(self.device)
        inputs_emotion = batch["input_emotions"].to(self.device)
        inputs_speaker = batch["input_speakers"].to(self.device)
        valid_input_lengths = batch["valid_input_lengths"].to(self.device)
        valid_output_lengths = batch["valid_output_lengths"].to(self.device)
        mel_targets = batch["mel_targets"].to(self.device)
        durations = (
            batch["durations"].to(self.device)
            if batch["durations"] is not None
            else None
        )
        pitch_contours = batch["pitch_contours"].to(self.device)
        energy_contours = batch["energy_contours"].to(self.device)
        attn_priors = (
            batch["attn_priors"].to(self.device)
            if batch["attn_priors"] is not None
            else None
        )
        fp_label = None
        if self.fp_enable:
            fp_label = batch["fp_label"].to(self.device)
        # generate mel spectrograms
        res = self.model["KanTtsSAMBERT"](
            inputs_ling,
            inputs_emotion,
            inputs_speaker,
            valid_input_lengths,
            output_lengths=valid_output_lengths,
            mel_targets=mel_targets,
            duration_targets=durations,
            pitch_targets=pitch_contours,
            energy_targets=energy_contours,
            attn_priors=attn_priors,
            fp_label=fp_label,
        )

        x_band_width = res["x_band_width"]
        h_band_width = res["h_band_width"]
        dec_outputs = res["dec_outputs"]
        postnet_outputs = res["postnet_outputs"]
        log_duration_predictions = res["log_duration_predictions"]
        pitch_predictions = res["pitch_predictions"]
        energy_predictions = res["energy_predictions"]
        duration_targets = res["duration_targets"]
        pitch_targets = res["pitch_targets"]
        energy_targets = res["energy_targets"]
        fp_predictions = res["fp_predictions"]
        valid_inter_lengths = res["valid_inter_lengths"]

        mel_loss_, mel_loss = self.criterion["MelReconLoss"](
            valid_output_lengths, mel_targets, dec_outputs, postnet_outputs
        )

        dur_loss, pitch_loss, energy_loss = self.criterion["ProsodyReconLoss"](
            valid_inter_lengths,
            duration_targets,
            pitch_targets,
            energy_targets,
            log_duration_predictions,
            pitch_predictions,
            energy_predictions,
        )
        loss_total = mel_loss_ + mel_loss + dur_loss + pitch_loss + energy_loss
        if self.fp_enable:
            fp_loss = self.criterion["FpCELoss"](
                valid_input_lengths, fp_predictions, fp_label
            )
            loss_total = loss_total + fp_loss

        if self.with_MAS:
            attn_soft = res["attn_soft"]
            attn_hard = res["attn_hard"]
            attn_logprob = res["attn_logprob"]
            attn_ctc_loss = self.criterion["AttentionCTCLoss"](
                attn_logprob, valid_input_lengths, valid_output_lengths
            )
            attn_kl_loss = self.criterion["AttentionBinarizationLoss"](
                self.epoch, attn_hard, attn_soft
            )

            loss_total += attn_ctc_loss + attn_kl_loss
            self.total_eval_loss["eval/attn_ctc_loss"] += attn_ctc_loss.item()
            self.total_eval_loss["eval/attn_kl_loss"] += attn_kl_loss.item()

        self.total_eval_loss["eval/TotalLoss"] += loss_total.item()
        self.total_eval_loss["eval/mel_loss_"] += mel_loss_.item()
        self.total_eval_loss["eval/mel_loss"] += mel_loss.item()
        self.total_eval_loss["eval/dur_loss"] += dur_loss.item()
        self.total_eval_loss["eval/pitch_loss"] += pitch_loss.item()
        self.total_eval_loss["eval/energy_loss"] += energy_loss.item()
        if self.fp_enable:
            self.total_eval_loss["eval/fp_loss"] += fp_loss.item()
        self.total_eval_loss["eval/batch_size"] += mel_targets.size(0)
        self.total_eval_loss["eval/x_band_width"] += x_band_width
        self.total_eval_loss["eval/h_band_width"] += h_band_width

    def train_step(self, batch):
        inputs_ling = batch["input_lings"].to(self.device)
        inputs_emotion = batch["input_emotions"].to(self.device)
        inputs_speaker = batch["input_speakers"].to(self.device)
        valid_input_lengths = batch["valid_input_lengths"].to(self.device)
        valid_output_lengths = batch["valid_output_lengths"].to(self.device)
        mel_targets = batch["mel_targets"].to(self.device)
        durations = (
            batch["durations"].to(self.device)
            if batch["durations"] is not None
            else None
        )
        pitch_contours = batch["pitch_contours"].to(self.device)
        energy_contours = batch["energy_contours"].to(self.device)
        attn_priors = (
            batch["attn_priors"].to(self.device)
            if batch["attn_priors"] is not None
            else None
        )
        fp_label = None
        if self.fp_enable:
            fp_label = batch["fp_label"].to(self.device)

        # generate mel spectrograms
        res = self.model["KanTtsSAMBERT"](
            inputs_ling,
            inputs_emotion,
            inputs_speaker,
            valid_input_lengths,
            output_lengths=valid_output_lengths,
            mel_targets=mel_targets,
            duration_targets=durations,
            pitch_targets=pitch_contours,
            energy_targets=energy_contours,
            attn_priors=attn_priors,
            fp_label=fp_label,
        )

        x_band_width = res["x_band_width"]
        h_band_width = res["h_band_width"]
        dec_outputs = res["dec_outputs"]
        postnet_outputs = res["postnet_outputs"]
        log_duration_predictions = res["log_duration_predictions"]
        pitch_predictions = res["pitch_predictions"]
        energy_predictions = res["energy_predictions"]

        duration_targets = res["duration_targets"]
        pitch_targets = res["pitch_targets"]
        energy_targets = res["energy_targets"]
        fp_predictions = res["fp_predictions"]
        valid_inter_lengths = res["valid_inter_lengths"]

        mel_loss_, mel_loss = self.criterion["MelReconLoss"](
            valid_output_lengths, mel_targets, dec_outputs, postnet_outputs
        )

        dur_loss, pitch_loss, energy_loss = self.criterion["ProsodyReconLoss"](
            valid_inter_lengths,
            duration_targets,
            pitch_targets,
            energy_targets,
            log_duration_predictions,
            pitch_predictions,
            energy_predictions,
        )
        loss_total = mel_loss_ + mel_loss + dur_loss + pitch_loss + energy_loss
        if self.fp_enable:
            fp_loss = self.criterion["FpCELoss"](
                valid_input_lengths, fp_predictions, fp_label
            )
            loss_total = loss_total + fp_loss

        if self.with_MAS:
            attn_soft = res["attn_soft"]
            attn_hard = res["attn_hard"]
            attn_logprob = res["attn_logprob"]
            attn_ctc_loss = self.criterion["AttentionCTCLoss"](
                attn_logprob, valid_input_lengths, valid_output_lengths
            )
            attn_kl_loss = self.criterion["AttentionBinarizationLoss"](
                self.epoch, attn_hard, attn_soft
            )

            loss_total += attn_ctc_loss + attn_kl_loss
            self.total_train_loss["train/attn_ctc_loss"] += attn_ctc_loss.item()
            self.total_train_loss["train/attn_kl_loss"] += attn_kl_loss.item()

        self.total_train_loss["train/TotalLoss"] += loss_total.item()
        self.total_train_loss["train/mel_loss_"] += mel_loss_.item()
        self.total_train_loss["train/mel_loss"] += mel_loss.item()
        self.total_train_loss["train/dur_loss"] += dur_loss.item()
        self.total_train_loss["train/pitch_loss"] += pitch_loss.item()
        self.total_train_loss["train/energy_loss"] += energy_loss.item()
        if self.fp_enable:
            self.total_train_loss["train/fp_loss"] += fp_loss.item()
        self.total_train_loss["train/batch_size"] += mel_targets.size(0)
        self.total_train_loss["train/x_band_width"] += x_band_width
        self.total_train_loss["train/h_band_width"] += h_band_width

        self.optimizer["KanTtsSAMBERT"].zero_grad()
        loss_total.backward()

        if self.grad_clip is not None:
            torch.nn.utils.clip_grad_norm_(
                self.model["KanTtsSAMBERT"].parameters(), self.grad_clip
            )
        self.optimizer["KanTtsSAMBERT"].step()
        self.scheduler["KanTtsSAMBERT"].step()

    def save_checkpoint(self, checkpoint_path):
        if not self.distributed:
            model_state = self.model["KanTtsSAMBERT"].state_dict()
        else:
            model_state = self.model["KanTtsSAMBERT"].module.state_dict()
        state_dict = {
            "optimizer": self.optimizer["KanTtsSAMBERT"].state_dict(),
            "scheduler": self.scheduler["KanTtsSAMBERT"].state_dict(),
            "steps": self.steps,
            "model": model_state,
        }

        if not os.path.exists(checkpoint_path):
            os.makedirs(os.path.dirname(checkpoint_path), exist_ok=True)
        torch.save(state_dict, checkpoint_path)

    def load_checkpoint(
        self, checkpoint_path, restore_training_state=False, strict=True
    ):
        state_dict = torch.load(checkpoint_path)
        if not self.distributed:
            self.model["KanTtsSAMBERT"].load_state_dict(
                state_dict["model"], strict=strict
            )
        else:
            self.model["KanTtsSAMBERT"].module.load_state_dict(
                state_dict["model"], strict=strict
            )

        if restore_training_state:
            if "optimizer" in state_dict:
                self.optimizer["KanTtsSAMBERT"].load_state_dict(state_dict["optimizer"])
            if "scheduler" in state_dict:
                self.scheduler["KanTtsSAMBERT"].load_state_dict(state_dict["scheduler"])
            if "steps" in state_dict:
                self.steps = state_dict["steps"]


class Textsy_BERT_Trainer(Trainer):
    def __init__(
        self,
        config,
        model,
        optimizer,
        scheduler,
        criterion,
        device,
        sampler,
        train_loader,
        valid_loader,
        max_epochs=None,
        max_steps=None,
        save_dir=None,
        save_interval=1,
        valid_interval=1,
        log_interval=10,
        grad_clip=None,
    ):
        super().__init__(
            config,
            model,
            optimizer,
            scheduler,
            criterion,
            device,
            sampler,
            train_loader,
            valid_loader,
            max_epochs,
            max_steps,
            save_dir,
            save_interval,
            valid_interval,
            log_interval,
            grad_clip,
        )

    @torch.no_grad()
    def genearete_and_save_intermediate_result(self, batch):
        inputs_ling = batch["input_lings"].to(self.device)
        valid_input_lengths = batch["valid_input_lengths"].to(self.device)
        bert_masks = batch["bert_masks"].to(self.device)
        targets = batch["targets"].to(self.device)

        res = self.model["KanTtsTextsyBERT"](
            inputs_ling[0:1],
            valid_input_lengths[0:1],
        )

        logits = res["logits"]
        enc_slf_attn_lst = res["enc_slf_attn_lst"]
        preds = torch.argmax(logits, dim=-1).contiguous().view(-1)

        dirname = os.path.join(self.log_dir, f"predictions/{self.steps}steps")
        if not os.path.exists(dirname):
            os.makedirs(dirname)

        for layer_id, slf_attn in enumerate(enc_slf_attn_lst):
            for head_id in range(
                self.config["Model"]["KanTtsTextsyBERT"]["params"]["encoder_num_heads"]
            ):
                fig = plot_alignment(
                    slf_attn[
                        head_id, : valid_input_lengths[0], : valid_input_lengths[0]
                    ]
                    .cpu()
                    .numpy(),
                    info="valid_len_{}".format(valid_input_lengths[0].item()),
                )
                fig.savefig(
                    os.path.join(
                        dirname,
                        "enc_slf_attn_dev_layer{}_head{}".format(layer_id, head_id),
                    )
                )

        target = targets[0].cpu().numpy()
        bert_mask = bert_masks[0].cpu().numpy()
        pred = preds.cpu().numpy()
        np.save(os.path.join(dirname, "pred.npy"), pred)
        np.save(os.path.join(dirname, "target.npy"), target)
        np.save(os.path.join(dirname, "bert_mask.npy"), bert_mask)

    @torch.no_grad()
    def eval_step(self, batch):
        inputs_ling = batch["input_lings"].to(self.device)
        valid_input_lengths = batch["valid_input_lengths"].to(self.device)
        bert_masks = batch["bert_masks"].to(self.device)
        targets = batch["targets"].to(self.device)

        res = self.model["KanTtsTextsyBERT"](
            inputs_ling,
            valid_input_lengths,
        )

        logits = res["logits"]
        loss_total, err = self.criterion["SeqCELoss"](
            logits,
            targets,
            bert_masks,
        )
        loss_total = loss_total / logits.size(-1)

        self.total_eval_loss["eval/TotalLoss"] += loss_total.item()
        self.total_eval_loss["eval/Error"] += err.item()
        self.total_eval_loss["eval/batch_size"] += targets.size(0)

    def train_step(self, batch):
        inputs_ling = batch["input_lings"].to(self.device)
        valid_input_lengths = batch["valid_input_lengths"].to(self.device)
        bert_masks = batch["bert_masks"].to(self.device)
        targets = batch["targets"].to(self.device)

        res = self.model["KanTtsTextsyBERT"](
            inputs_ling,
            valid_input_lengths,
        )

        logits = res["logits"]
        loss_total, err = self.criterion["SeqCELoss"](
            logits,
            targets,
            bert_masks,
        )
        loss_total = loss_total / logits.size(-1)

        self.optimizer["KanTtsTextsyBERT"].zero_grad()
        loss_total.backward()

        if self.grad_clip is not None:
            torch.nn.utils.clip_grad_norm_(
                self.model["KanTtsTextsyBERT"].parameters(), self.grad_clip
            )
        self.optimizer["KanTtsTextsyBERT"].step()
        self.scheduler["KanTtsTextsyBERT"].step()

        self.total_train_loss["train/TotalLoss"] += loss_total.item()
        self.total_train_loss["train/Error"] += err.item()
        self.total_train_loss["train/batch_size"] += targets.size(0)

    def save_checkpoint(self, checkpoint_path):
        if not self.distributed:
            model_state = self.model["KanTtsTextsyBERT"].state_dict()
        else:
            model_state = self.model["KanTtsTextsyBERT"].module.state_dict()
        state_dict = {
            "optimizer": self.optimizer["KanTtsTextsyBERT"].state_dict(),
            "scheduler": self.scheduler["KanTtsTextsyBERT"].state_dict(),
            "steps": self.steps,
            "model": model_state,
        }

        if not os.path.exists(checkpoint_path):
            os.makedirs(os.path.dirname(checkpoint_path), exist_ok=True)
        torch.save(state_dict, checkpoint_path)

    def load_checkpoint(
        self, checkpoint_path, restore_training_state=False, strict=True
    ):
        state_dict = torch.load(checkpoint_path)
        if not self.distributed:
            self.model["KanTtsTextsyBERT"].load_state_dict(
                state_dict["model"], strict=strict
            )
        else:
            self.model["KanTtsTextsyBERT"].module.load_state_dict(
                state_dict["model"], strict=strict
            )

        if restore_training_state:
            self.optimizer["KanTtsTextsyBERT"].load_state_dict(state_dict["optimizer"])
            self.scheduler["KanTtsTextsyBERT"].load_state_dict(state_dict["scheduler"])
            self.steps = state_dict["steps"]