layers.py 16 KB
Newer Older
liugh5's avatar
liugh5 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import torch
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from torch import nn


def get_nonlinear(config_str, channels):
    nonlinear = nn.Sequential()
    for name in config_str.split('-'):
        if name == 'relu':
            nonlinear.add_module('relu', nn.ReLU(inplace=True))
        elif name == 'prelu':
            nonlinear.add_module('prelu', nn.PReLU(channels))
        elif name == 'batchnorm':
            nonlinear.add_module('batchnorm', nn.BatchNorm1d(channels))
        elif name == 'batchnorm_':
            nonlinear.add_module('batchnorm',
                                 nn.BatchNorm1d(channels, affine=False))
        else:
            raise ValueError('Unexpected module ({}).'.format(name))
    return nonlinear


def statistics_pooling(x, dim=-1, keepdim=False, unbiased=True, eps=1e-2):
    mean = x.mean(dim=dim)
    std = x.std(dim=dim, unbiased=unbiased)
    stats = torch.cat([mean, std], dim=-1)
    if keepdim:
        stats = stats.unsqueeze(dim=dim)
    return stats


def high_order_statistics_pooling(x,
                                  dim=-1,
                                  keepdim=False,
                                  unbiased=True,
                                  eps=1e-2):
    mean = x.mean(dim=dim)
    std = x.std(dim=dim, unbiased=unbiased)
    norm = (x - mean.unsqueeze(dim=dim)) \
        / std.clamp(min=eps).unsqueeze(dim=dim)
    skewness = norm.pow(3).mean(dim=dim)
    kurtosis = norm.pow(4).mean(dim=dim)
    stats = torch.cat([mean, std, skewness, kurtosis], dim=-1)
    if keepdim:
        stats = stats.unsqueeze(dim=dim)
    return stats


class StatsPool(nn.Module):
    def forward(self, x):
        return statistics_pooling(x)


class HighOrderStatsPool(nn.Module):
    def forward(self, x):
        return high_order_statistics_pooling(x)


class TDNNLayer(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 bias=False,
                 config_str='batchnorm-relu'):
        super(TDNNLayer, self).__init__()
        if padding < 0:
            assert kernel_size % 2 == 1, 'Expect equal paddings, but got even kernel size ({})'.format(
                kernel_size)
            padding = (kernel_size - 1) // 2 * dilation
        self.linear = nn.Conv1d(in_channels,
                                out_channels,
                                kernel_size,
                                stride=stride,
                                padding=padding,
                                dilation=dilation,
                                bias=bias)
        self.nonlinear = get_nonlinear(config_str, out_channels)

    def forward(self, x):
        x = self.linear(x)
        x = self.nonlinear(x)
        return x


class DenseTDNNLayer(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 bn_channels,
                 kernel_size,
                 stride=1,
                 dilation=1,
                 bias=False,
                 config_str='batchnorm-relu',
                 memory_efficient=False):
        super(DenseTDNNLayer, self).__init__()
        assert kernel_size % 2 == 1, 'Expect equal paddings, but got even kernel size ({})'.format(
            kernel_size)
        padding = (kernel_size - 1) // 2 * dilation
        self.memory_efficient = memory_efficient
        self.nonlinear1 = get_nonlinear(config_str, in_channels)
        self.linear1 = nn.Conv1d(in_channels, bn_channels, 1, bias=False)
        self.nonlinear2 = get_nonlinear(config_str, bn_channels)
        self.linear2 = nn.Conv1d(bn_channels,
                                 out_channels,
                                 kernel_size,
                                 stride=stride,
                                 padding=padding,
                                 dilation=dilation,
                                 bias=bias)

    def bn_function(self, x):
        return self.linear1(self.nonlinear1(x))

    def forward(self, x):
        if self.training and self.memory_efficient:
            x = cp.checkpoint(self.bn_function, x)
        else:
            x = self.bn_function(x)
        x = self.linear2(self.nonlinear2(x))
        return x


class DenseTDNNBlock(nn.ModuleList):
    def __init__(self,
                 num_layers,
                 in_channels,
                 out_channels,
                 bn_channels,
                 kernel_size,
                 stride=1,
                 dilation=1,
                 bias=False,
                 config_str='batchnorm-relu',
                 memory_efficient=False):
        super(DenseTDNNBlock, self).__init__()
        for i in range(num_layers):
            layer = DenseTDNNLayer(in_channels=in_channels + i * out_channels,
                                   out_channels=out_channels,
                                   bn_channels=bn_channels,
                                   kernel_size=kernel_size,
                                   stride=stride,
                                   dilation=dilation,
                                   bias=bias,
                                   config_str=config_str,
                                   memory_efficient=memory_efficient)
            self.add_module('tdnnd%d' % (i + 1), layer)

    def forward(self, x):
        for layer in self:
            x = torch.cat([x, layer(x)], dim=1)
        return x


class StatsSelect(nn.Module):
    def __init__(self, channels, branches, null=False, reduction=1):
        super(StatsSelect, self).__init__()
        self.gather = HighOrderStatsPool()
        self.linear1 = nn.Conv1d(channels * 4, channels // reduction, 1)
        self.linear2 = nn.ModuleList()
        if null:
            branches += 1
        for _ in range(branches):
            self.linear2.append(nn.Conv1d(channels // reduction, channels, 1))
        self.channels = channels
        self.branches = branches
        self.null = null
        self.reduction = reduction

    def forward(self, x):
        f = torch.cat([_x.unsqueeze(dim=1) for _x in x], dim=1)
        x = torch.sum(f, dim=1)
        x = self.linear1(self.gather(x).unsqueeze(dim=-1))
        s = []
        for linear in self.linear2:
            s.append(linear(x).view(-1, 1, self.channels))
        s = torch.cat(s, dim=1)
        s = F.softmax(s, dim=1).unsqueeze(dim=-1)
        if self.null:
            s = s[:, :-1, :, :]
        return torch.sum(f * s, dim=1)

    def extra_repr(self):
        return 'channels={}, branches={}, reduction={}'.format(
            self.channels, self.branches, self.reduction)


class SqueezeExcitation(nn.Module):
    def __init__(self, channels, reduction=1):
        super(SqueezeExcitation, self).__init__()
        self.linear1 = nn.Conv1d(channels, channels // reduction, 1)
        self.relu = nn.ReLU(inplace=True)
        self.linear2 = nn.Conv1d(channels // reduction, channels, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        s = self.linear1(x.mean(-1, keepdim=True)+self.seg_pooling(x))
        s = self.relu(s)
        s = self.sigmoid(self.linear2(s))
        return x*s

    def seg_pooling(self, x, seg_len=100):
        s_x = F.max_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True)
        out = s_x.unsqueeze(-1).expand(-1, -1, -1, seg_len).reshape(*x.shape[:-1], -1)
        out = out[:, :, :x.shape[-1]]
        return out

class PoolingBlock(nn.Module):
    def __init__(self, bn_channels, out_channels, kernel_size, stride, padding, dilation, bias, reduction=2):
        super(PoolingBlock, self).__init__()
        self.linear_stem = nn.Conv1d(bn_channels,
                                 out_channels,
                                 kernel_size,
                                 stride=stride,
                                 padding=padding,
                                 dilation=dilation,
                                 bias=bias)
        self.linear1 = nn.Conv1d(bn_channels, bn_channels // reduction, 1)
        self.relu = nn.ReLU(inplace=True)
        # self.bn = nn.BatchNorm1d(out_channels)
        self.linear2 = nn.Conv1d(bn_channels // reduction, out_channels, 1)
        self.sigmoid = nn.Sigmoid()
        # self.linear3 = nn.Conv1d(out_channels, out_channels, 1)

    def forward(self, x):
        y = self.linear_stem(x)
        s = self.linear1(x.mean(-1, keepdim=True)+self.seg_pooling(x))
        s = self.relu(s)
        s = self.sigmoid(self.linear2(s))
        return y*s
    
    def seg_pooling(self, x, seg_len=100):
        s_x = F.max_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True)
        out = s_x.unsqueeze(-1).expand(-1, -1, -1, seg_len).reshape(*x.shape[:-1], -1)
        out = out[:, :, :x.shape[-1]]
        return out


class MultiBranchDenseTDNNLayer(DenseTDNNLayer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 bn_channels,
                 kernel_size,
                 stride=1,
                 dilation=(1, ),
                 bias=False,
                 null=False,
                 reduction=1,
                 config_str='batchnorm-relu',
                 memory_efficient=False):
        super(DenseTDNNLayer, self).__init__()
        assert kernel_size % 2 == 1, 'Expect equal paddings, but got even kernel size ({})'.format(
            kernel_size)
        padding = (kernel_size - 1) // 2
        if not isinstance(dilation, (tuple, list)):
            dilation = (dilation, )
        self.memory_efficient = memory_efficient
        self.nonlinear1 = get_nonlinear(config_str, in_channels)
        self.linear1 = nn.Conv1d(in_channels, bn_channels, 1, bias=False)
        self.nonlinear2 = get_nonlinear(config_str, bn_channels)
        self.linear2 = nn.ModuleList()
        for _dilation in dilation:
            self.linear2.append(
                nn.Conv1d(bn_channels,
                          out_channels,
                          kernel_size,
                          stride=stride,
                          padding=padding * _dilation,
                          dilation=_dilation,
                          bias=bias))
        self.select = StatsSelect(out_channels,
                                  len(dilation),
                                  null=null,
                                  reduction=reduction)

    def forward(self, x):
        if self.training and self.memory_efficient:
            x = cp.checkpoint(self.bn_function, x)
        else:
            x = self.bn_function(x)
        x = self.nonlinear2(x)
        x = self.select([linear(x) for linear in self.linear2])
        return x

class SEDenseTDNNLayer(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 bn_channels,
                 kernel_size,
                 stride=1,
                 dilation=1,
                 bias=False,
                 config_str='batchnorm-relu',
                 memory_efficient=False):
        super(SEDenseTDNNLayer, self).__init__()
        assert kernel_size % 2 == 1, 'Expect equal paddings, but got even kernel size ({})'.format(
            kernel_size)
        padding = (kernel_size - 1) // 2 * dilation
        self.memory_efficient = memory_efficient
        self.nonlinear1 = get_nonlinear(config_str, in_channels)
        self.linear1 = nn.Conv1d(in_channels, bn_channels, 1, bias=False)
        self.nonlinear2 = get_nonlinear(config_str, bn_channels)
        # self.linear2 = nn.Conv1d(bn_channels,
        #                          out_channels,
        #                          kernel_size,
        #                          stride=stride,
        #                          padding=padding,
        #                          dilation=dilation,
        #                          bias=bias)
        # self.se = SqueezeExcitation(out_channels)
        self.se = PoolingBlock(bn_channels,
                                out_channels,
                                kernel_size,
                                stride=stride,
                                padding=padding,
                                dilation=dilation,
                                bias=bias)

    def bn_function(self, x):
        return self.linear1(self.nonlinear1(x))

    def forward(self, x):
        if self.training and self.memory_efficient:
            x = cp.checkpoint(self.bn_function, x)
        else:
            x = self.bn_function(x)
        # x = self.linear2(self.nonlinear2(x))
        x = self.se(self.nonlinear2(x))
        return x

class SEDenseTDNNBlock(nn.ModuleList):
    def __init__(self,
                 num_layers,
                 in_channels,
                 out_channels,
                 bn_channels,
                 kernel_size,
                 stride=1,
                 dilation=1,
                 bias=False,
                 config_str='batchnorm-relu',
                 memory_efficient=False):
        super(SEDenseTDNNBlock, self).__init__()
        for i in range(num_layers):
            layer = SEDenseTDNNLayer(in_channels=in_channels + i * out_channels,
                                   out_channels=out_channels,
                                   bn_channels=bn_channels,
                                   kernel_size=kernel_size,
                                   stride=stride,
                                   dilation=dilation,
                                   bias=bias,
                                   config_str=config_str,
                                   memory_efficient=memory_efficient)
            self.add_module('tdnnd%d' % (i + 1), layer)

    def forward(self, x):
        for layer in self:
            x = torch.cat([x, layer(x)], dim=1)
        return x

class MultiBranchDenseTDNNBlock(DenseTDNNBlock):
    def __init__(self,
                 num_layers,
                 in_channels,
                 out_channels,
                 bn_channels,
                 kernel_size,
                 stride=1,
                 dilation=1,
                 bias=False,
                 null=False,
                 reduction=1,
                 config_str='batchnorm-relu',
                 memory_efficient=False):
        super(DenseTDNNBlock, self).__init__()
        for i in range(num_layers):
            layer = MultiBranchDenseTDNNLayer(
                in_channels=in_channels + i * out_channels,
                out_channels=out_channels,
                bn_channels=bn_channels,
                kernel_size=kernel_size,
                stride=stride,
                dilation=dilation,
                bias=bias,
                null=null,
                reduction=reduction,
                config_str=config_str,
                memory_efficient=memory_efficient)
            self.add_module('tdnnd%d' % (i + 1), layer)


class TransitLayer(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 bias=True,
                 config_str='batchnorm-relu'):
        super(TransitLayer, self).__init__()
        self.nonlinear = get_nonlinear(config_str, in_channels)
        self.linear = nn.Conv1d(in_channels, out_channels, 1, bias=bias)

    def forward(self, x):
        x = self.nonlinear(x)
        x = self.linear(x)
        return x


class DenseLayer(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 bias=False,
                 config_str='batchnorm-relu'):
        super(DenseLayer, self).__init__()
        self.linear = nn.Conv1d(in_channels, out_channels, 1, bias=bias)
        self.nonlinear = get_nonlinear(config_str, out_channels)

    def forward(self, x):
        if len(x.shape) == 2:
            x = self.linear(x.unsqueeze(dim=-1)).squeeze(dim=-1)
        else:
            x = self.linear(x)
        x = self.nonlinear(x)
        return x


if __name__ == '__main__':
    model = SqueezeExcitation(channels=32)
    model.eval() 

    x = torch.randn(1, 32, 298)
    y = model(x)
    print(y.size())
    from thop import profile
    macs, num_params = profile(model, inputs=(x, ))
    # num_params = sum(p.numel() for p in model.parameters())
    print("MACs: {} G".format(macs / 1e9))
    print("Params: {} M".format(num_params / 1e6))