fp_processor.py 5.54 KB
Newer Older
liugh5's avatar
liugh5 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import logging
import random


def is_fp_line(line):
    fp_category_list = ["FP", "I", "N", "Q"]
    elements = line.strip().split(" ")
    res = True
    for ele in elements:
        if ele not in fp_category_list:
            res = False
            break
    return res


class FpProcessor:
    def __init__(self):
        #  TODO: Add more audio processing methods.
        self.res = []

    def is_fp_line(line):
        fp_category_list = ["FP", "I", "N", "Q"]
        elements = line.strip().split(" ")
        res = True
        for ele in elements:
            if ele not in fp_category_list:
                res = False
                break
        return res

    # TODO: adjust idx judgment rule
    def addfp(self, voice_output_dir, prosody, raw_metafile_lines):

        fp_category_list = ["FP", "I", "N"]

        f = open(prosody)
        prosody_lines = f.readlines()
        f.close()

        idx = ""
        fp = ""
        fp_label_dict = {}
        i = 0
        while i < len(prosody_lines):
            if len(prosody_lines[i].strip().split("\t")) == 2:
                idx = prosody_lines[i].strip().split("\t")[0]
                i += 1
            else:
                fp_enable = is_fp_line(prosody_lines[i])
                if fp_enable:
                    fp = prosody_lines[i].strip().split("\t")[0].split(" ")
                    for label in fp:
                        if label not in fp_category_list:
                            logging.warning("fp label not in fp_category_list")
                            break
                    i += 4
                else:
                    fp = [
                        "N"
                        for _ in range(
                            len(
                                prosody_lines[i]
                                .strip()
                                .split("\t")[0]
                                .replace("/ ", "")
                                .replace(". ", "")
                                .split(" ")
                            )
                        )
                    ]
                    i += 1
                fp_label_dict[idx] = fp

        fpadd_metafile = os.path.join(voice_output_dir, "fpadd_metafile.txt")
        f_out = open(fpadd_metafile, "w")
        for line in raw_metafile_lines:
            tokens = line.strip().split("\t")
            if len(tokens) == 2:
                uttname = tokens[0]
                symbol_sequences = tokens[1].split(" ")

                error_flag = False
                idx = 0
                out_str = uttname + "\t"

                for this_symbol_sequence in symbol_sequences:
                    emotion = this_symbol_sequence.split("$")[4]
                    this_symbol_sequence = this_symbol_sequence.replace(
                        emotion, "emotion_neutral"
                    )

                    if idx < len(fp_label_dict[uttname]):
                        if fp_label_dict[uttname][idx] == "FP":
                            if "none" not in this_symbol_sequence:
                                this_symbol_sequence = this_symbol_sequence.replace(
                                    "emotion_neutral", "emotion_disgust"
                                )
                        syllable_label = this_symbol_sequence.split("$")[2]
                        if syllable_label == "s_both" or syllable_label == "s_end":
                            idx += 1
                    elif idx > len(fp_label_dict[uttname]):
                        logging.warning(uttname + " not match")
                        error_flag = True
                    out_str = out_str + this_symbol_sequence + " "

                # if idx != len(fp_label_dict[uttname]):
                #     logging.warning(
                #         "{} length mismatch, length: {} ".format(
                #             idx, len(fp_label_dict[uttname])
                #         )
                #     )

                if not error_flag:
                    f_out.write(out_str.strip() + "\n")
        f_out.close()
        return fpadd_metafile

    def removefp(self, voice_output_dir, fpadd_metafile, raw_metafile_lines):

        f = open(fpadd_metafile)
        fpadd_metafile_lines = f.readlines()
        f.close()

        fprm_metafile = os.path.join(voice_output_dir, "fprm_metafile.txt")
        f_out = open(fprm_metafile, "w")
        for i in range(len(raw_metafile_lines)):
            tokens = raw_metafile_lines[i].strip().split("\t")
            symbol_sequences = tokens[1].split(" ")
            fpadd_tokens = fpadd_metafile_lines[i].strip().split("\t")
            fpadd_symbol_sequences = fpadd_tokens[1].split(" ")

            error_flag = False
            out_str = tokens[0] + "\t"
            idx = 0
            length = len(symbol_sequences)
            while idx < length:
                if "$emotion_disgust" in fpadd_symbol_sequences[idx]:
                    if idx + 1 < length and "none" in fpadd_symbol_sequences[idx + 1]:
                        idx = idx + 2
                    else:
                        idx = idx + 1
                    continue
                out_str = out_str + symbol_sequences[idx] + " "
                idx = idx + 1

            if not error_flag:
                f_out.write(out_str.strip() + "\n")
        f_out.close()

    def process(self, voice_output_dir, prosody, raw_metafile):

        with open(raw_metafile, "r") as f:
            lines = f.readlines()
        random.shuffle(lines)

        fpadd_metafile = self.addfp(voice_output_dir, prosody, lines)
        self.removefp(voice_output_dir, fpadd_metafile, lines)