__init__.py 5.99 KB
Newer Older
liugh5's avatar
liugh5 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch
from torch.nn.parallel import DistributedDataParallel
from kantts.models.hifigan.hifigan import (  # NOQA
    Generator,  # NOQA
    MultiScaleDiscriminator,  # NOQA
    MultiPeriodDiscriminator,  # NOQA
    MultiSpecDiscriminator,  # NOQA
)
import kantts
import kantts.train.scheduler
from kantts.models.sambert.kantts_sambert import KanTtsSAMBERT, KanTtsTextsyBERT  # NOQA
from kantts.utils.ling_unit.ling_unit import get_fpdict
from .pqmf import PQMF


def optimizer_builder(model_params, opt_name, opt_params):
    opt_cls = getattr(torch.optim, opt_name)
    optimizer = opt_cls(model_params, **opt_params)
    return optimizer


def scheduler_builder(optimizer, sche_name, sche_params):
    scheduler_cls = getattr(kantts.train.scheduler, sche_name)
    scheduler = scheduler_cls(optimizer, **sche_params)
    return scheduler


def hifigan_model_builder(config, device, rank, distributed):
    model = {}
    optimizer = {}
    scheduler = {}
    model["discriminator"] = {}
    optimizer["discriminator"] = {}
    scheduler["discriminator"] = {}
    for model_name in config["Model"].keys():
        if model_name == "Generator":
            params = config["Model"][model_name]["params"]
            model["generator"] = Generator(**params).to(device)
            optimizer["generator"] = optimizer_builder(
                model["generator"].parameters(),
                config["Model"][model_name]["optimizer"].get("type", "Adam"),
                config["Model"][model_name]["optimizer"].get("params", {}),
            )
            scheduler["generator"] = scheduler_builder(
                optimizer["generator"],
                config["Model"][model_name]["scheduler"].get("type", "StepLR"),
                config["Model"][model_name]["scheduler"].get("params", {}),
            )
        else:
            params = config["Model"][model_name]["params"]
            model["discriminator"][model_name] = globals()[model_name](**params).to(
                device
            )
            optimizer["discriminator"][model_name] = optimizer_builder(
                model["discriminator"][model_name].parameters(),
                config["Model"][model_name]["optimizer"].get("type", "Adam"),
                config["Model"][model_name]["optimizer"].get("params", {}),
            )
            scheduler["discriminator"][model_name] = scheduler_builder(
                optimizer["discriminator"][model_name],
                config["Model"][model_name]["scheduler"].get("type", "StepLR"),
                config["Model"][model_name]["scheduler"].get("params", {}),
            )

    out_channels = config["Model"]["Generator"]["params"]["out_channels"]
    if out_channels > 1:
        model["pqmf"] = PQMF(subbands=out_channels, **config.get("pqmf", {})).to(device)

    # FIXME: pywavelets buffer leads to gradient error in DDP training
    # Solution: https://github.com/pytorch/pytorch/issues/22095
    if distributed:
        model["generator"] = DistributedDataParallel(
            model["generator"],
            device_ids=[rank],
            output_device=rank,
            broadcast_buffers=False,
        )
        for model_name in model["discriminator"].keys():
            model["discriminator"][model_name] = DistributedDataParallel(
                model["discriminator"][model_name],
                device_ids=[rank],
                output_device=rank,
                broadcast_buffers=False,
            )

    return model, optimizer, scheduler


#  TODO: some parsing
def sambert_model_builder(config, device, rank, distributed):
    model = {}
    optimizer = {}
    scheduler = {}

    model["KanTtsSAMBERT"] = KanTtsSAMBERT(
        config["Model"]["KanTtsSAMBERT"]["params"]
    ).to(device)

    fp_enable = config["Model"]["KanTtsSAMBERT"]["params"].get("FP", False)
    if fp_enable:
        fp_dict = {
            k: torch.from_numpy(v).long().unsqueeze(0).to(device)
            for k, v in get_fpdict(config).items()
        }
        model["KanTtsSAMBERT"].fp_dict = fp_dict

    optimizer["KanTtsSAMBERT"] = optimizer_builder(
        model["KanTtsSAMBERT"].parameters(),
        config["Model"]["KanTtsSAMBERT"]["optimizer"].get("type", "Adam"),
        config["Model"]["KanTtsSAMBERT"]["optimizer"].get("params", {}),
    )
    scheduler["KanTtsSAMBERT"] = scheduler_builder(
        optimizer["KanTtsSAMBERT"],
        config["Model"]["KanTtsSAMBERT"]["scheduler"].get("type", "StepLR"),
        config["Model"]["KanTtsSAMBERT"]["scheduler"].get("params", {}),
    )

    if distributed:
        model["KanTtsSAMBERT"] = DistributedDataParallel(
            model["KanTtsSAMBERT"], device_ids=[rank], output_device=rank
        )

    return model, optimizer, scheduler


def sybert_model_builder(config, device, rank, distributed):
    model = {}
    optimizer = {}
    scheduler = {}

    model["KanTtsTextsyBERT"] = KanTtsTextsyBERT(
        config["Model"]["KanTtsTextsyBERT"]["params"]
    ).to(device)
    optimizer["KanTtsTextsyBERT"] = optimizer_builder(
        model["KanTtsTextsyBERT"].parameters(),
        config["Model"]["KanTtsTextsyBERT"]["optimizer"].get("type", "Adam"),
        config["Model"]["KanTtsTextsyBERT"]["optimizer"].get("params", {}),
    )
    scheduler["KanTtsTextsyBERT"] = scheduler_builder(
        optimizer["KanTtsTextsyBERT"],
        config["Model"]["KanTtsTextsyBERT"]["scheduler"].get("type", "StepLR"),
        config["Model"]["KanTtsTextsyBERT"]["scheduler"].get("params", {}),
    )

    if distributed:
        model["KanTtsTextsyBERT"] = DistributedDataParallel(
            model["KanTtsTextsyBERT"], device_ids=[rank], output_device=rank
        )

    return model, optimizer, scheduler


#  TODO: implement a builder for specific model
model_dict = {
    "hifigan": hifigan_model_builder,
    "sambert": sambert_model_builder,
    "sybert": sybert_model_builder,
}


def model_builder(config, device="cpu", rank=0, distributed=False):
    builder_func = model_dict[config["model_type"]]
    model, optimizer, scheduler = builder_func(config, device, rank, distributed)
    return model, optimizer, scheduler