train_sybert.py 6.58 KB
Newer Older
liugh5's avatar
liugh5 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import sys
import argparse
import torch
from torch.utils.data import DataLoader
import logging
import time
import yaml

ROOT_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))  # NOQA: E402
sys.path.insert(0, os.path.dirname(ROOT_PATH))  # NOQA: E402

try:
    from kantts.models import model_builder
    from kantts.train.loss import criterion_builder
    from kantts.datasets.dataset import get_bert_text_datasets
    from kantts.train.trainer import distributed_init, Textsy_BERT_Trainer
    from kantts.utils.log import logging_to_file, get_git_revision_hash
except ImportError:
    raise ImportError("Please install kantts.")

logging.basicConfig(
    #  filename=os.path.join(stage_dir, 'stdout.log'),
    format="%(asctime)s %(levelname)-4s [%(filename)s:%(lineno)d] %(message)s",
    datefmt="%Y-%m-%d:%H:%M:%S",
    level=logging.INFO,
)


def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)


#  TODO: distributed training
def train(
    model_config,
    root_dir,
    stage_dir,
    resume_path=None,
    local_rank=0,
):
    if not torch.cuda.is_available():
        device = torch.device("cpu")
        distributed = False
    else:
        torch.backends.cudnn.benchmark = True
        logging.info("Args local rank: {}".format(local_rank))
        distributed, device, local_rank, world_size = distributed_init()

    if local_rank != 0:
        sys.stdout = open(os.devnull, "w")
        logger = logging.getLogger()
        logger.disabled = True

    if not isinstance(root_dir, list):
        root_dir = [root_dir]

    meta_file = [os.path.join(d, "raw_metafile.txt") for d in root_dir]

    if local_rank == 0 and not os.path.exists(stage_dir):
        os.makedirs(stage_dir)

    with open(model_config, "r") as f:
        config = yaml.load(f, Loader=yaml.Loader)

    logging_to_file(os.path.join(stage_dir, "stdout.log"))

    # TODO: record some info in config, such as create time, git commit
    # revision
    config["create_time"] = time.strftime(
        "%Y-%m-%d %H:%M:%S", time.localtime())
    config["git_revision_hash"] = get_git_revision_hash()

    with open(os.path.join(stage_dir, "config.yaml"), "w") as f:
        yaml.dump(config, f, Dumper=yaml.Dumper, default_flow_style=None)

    for key, value in config.items():
        logging.info(f"{key} = {value}")

    if distributed:
        config["rank"] = torch.distributed.get_rank()
        config["distributed"] = True

    #  TODO: abstract dataloader
    # Dataset prepare
    train_dataset, valid_dataset = get_bert_text_datasets(
        meta_file, root_dir, config, config["allow_cache"]
    )

    logging.info(f"The number of training files = {len(train_dataset)}.")
    logging.info(f"The number of validation files = {len(valid_dataset)}.")

    sampler = {"train": None, "valid": None}
    if distributed:
        # setup sampler for distributed training
        from torch.utils.data.distributed import DistributedSampler

        sampler["train"] = DistributedSampler(
            dataset=train_dataset,
            num_replicas=world_size,
            shuffle=True,
        )
        sampler["valid"] = DistributedSampler(
            dataset=valid_dataset,
            num_replicas=world_size,
            shuffle=False,
        )

    train_dataloader = DataLoader(
        train_dataset,
        shuffle=False if distributed else True,
        collate_fn=train_dataset.collate_fn,
        batch_size=config["batch_size"],
        num_workers=config["num_workers"],
        sampler=sampler["train"],
        pin_memory=config["pin_memory"],
    )

    valid_dataloader = DataLoader(
        valid_dataset,
        shuffle=False if distributed else True,
        collate_fn=valid_dataset.collate_fn,
        batch_size=config["batch_size"],
        num_workers=config["num_workers"],
        sampler=sampler["valid"],
        pin_memory=config["pin_memory"],
    )

    ling_unit_size = train_dataset.ling_unit.get_unit_size()

    config["Model"]["KanTtsTextsyBERT"]["params"].update(ling_unit_size)
    model, optimizer, scheduler = model_builder(
        config, device, local_rank, distributed)

    criterion = criterion_builder(config, device)

    logging.info(model["KanTtsTextsyBERT"])
    logging.info(
        "TextsyBERT mdoel parameters count: {}".format(
            count_parameters(model["KanTtsTextsyBERT"])
        )
    )

    logging.info(optimizer["KanTtsTextsyBERT"])
    logging.info(scheduler["KanTtsTextsyBERT"])
    for criterion_ in criterion.values():
        logging.info(criterion_)

    trainer = Textsy_BERT_Trainer(
        config=config,
        model=model,
        optimizer=optimizer,
        scheduler=scheduler,
        criterion=criterion,
        device=device,
        sampler=sampler,
        train_loader=train_dataloader,
        valid_loader=valid_dataloader,
        max_steps=config["train_max_steps"],
        save_dir=stage_dir,
        save_interval=config["save_interval_steps"],
        valid_interval=config["eval_interval_steps"],
        log_interval=config["log_interval_steps"],
        grad_clip=config["grad_norm"],
    )

    if resume_path is not None:
        trainer.load_checkpoint(resume_path, True)
        logging.info(f"Successfully resumed from {resume_path}.")

    try:
        trainer.train()
    except (Exception, KeyboardInterrupt) as e:
        logging.error(e, exc_info=True)
        trainer.save_checkpoint(
            os.path.join(
                os.path.join(
                    stage_dir,
                    "ckpt"),
                f"checkpoint-{trainer.steps}.pth"))
        logging.info(f"Successfully saved checkpoint @ {trainer.steps}steps.")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Train a model for speech synthesis")

    parser.add_argument(
        "--model_config", type=str, required=True, help="model config file"
    )
    parser.add_argument(
        "--root_dir",
        nargs="+",
        type=str,
        required=True,
        help="root dir of dataset; cloud be multiple directories",
    )
    parser.add_argument(
        "--stage_dir",
        type=str,
        required=True,
        help="stage dir of checkpoint, log and intermidate results ",
    )
    parser.add_argument(
        "--resume_path",
        type=str,
        default=None,
        help="path to resume checkpoint")
    parser.add_argument(
        "--local_rank",
        type=int,
        default=0,
        help="local rank for distributed training")
    args = parser.parse_args()

    train(
        args.model_config,
        args.root_dir,
        args.stage_dir,
        args.resume_path,
        args.local_rank,
    )