1. 17 Jul, 2020 7 commits
  2. 16 Jul, 2020 3 commits
  3. 13 Jul, 2020 8 commits
  4. 11 Jul, 2020 1 commit
  5. 10 Jul, 2020 7 commits
  6. 09 Jul, 2020 6 commits
  7. 08 Jul, 2020 3 commits
    • Kaushik Shivakumar's avatar
      save some changes · bbcfd6ba
      Kaushik Shivakumar authored
      bbcfd6ba
    • kmindspark's avatar
      TF2 eager object detection colab · c96e5d5b
      kmindspark authored
      c96e5d5b
    • vivek rathod's avatar
      Merged commit includes the following changes: (#8803) · 52bb4ab1
      vivek rathod authored
      
      
      320117767  by ronnyvotel:
      
          DensePose postprocessing implementation.
      
      --
      320065853  by ronnyvotel:
      
          Updating how masks are reframed, so that it works on float and uint8 masks.
      
      --
      320061717  by yuhuic:
      
          Updated CenterNet restore_from_objects to allow the model to load the
          checkpoints saved during training.
      
      --
      319835172  by ronnyvotel:
      
          Updating how the DensePose UV Symmetries MAT file path is constructed and loaded.
      
      --
      319834678  by ronnyvotel:
      
          First update to CenterNetMetaArch for DensePose. Adding prediction and loss functionality.
      
      --
      319810261  by rathodv:
      
          Create a setup.py file to simplify installation.
      
          Usage:
          "python object_detection/packages/tf1/setup.py install" for TF1.
          "python object_detection/packages/tf2/setup.py install" for TF2.
      
          or to create source distribution
          "python object_detection/packages/tf1/setup.py sdist" for TF1.
          "python object_detection/packages/tf2/setup.py sdist" for TF2.
      
      --
      319803041  by sbeery:
      
          Updating documentation for export
      
      --
      319688087  by rathodv:
      
          Update as_matrix() to to_numpy() to avoid failures with python3.6
      
      --
      319686183  by vighneshb:
      
          Require tpu_name when use_tpu is set.
      
      --
      319613327  by aom:
      
          EfficientDet-style Data Augmentation.
      
      --
      319572180  by rathodv:
      
          Add TF2 SSD FPN (a.k.a RetinaNet) configs.
      
      --
      319553823  by rathodv:
      
          Internal Change.
      
      --
      
      PiperOrigin-RevId: 320117767
      Co-authored-by: default avatarTF Object Detection Team <no-reply@google.com>
      52bb4ab1
  8. 04 Jul, 2020 1 commit
  9. 01 Jul, 2020 3 commits
  10. 30 Jun, 2020 1 commit
    • Yiming Shi's avatar
      Add Faster RCNN Resnet V1 FPN Keras feature extractor (#8716) · 3300fa04
      Yiming Shi authored
      * Initial commit for faster rcnn resnet v1 fpn feature extractor.
      
      1. Setup code structure for fpn feature extractor
      
      * draft for faster rcnn resnet vi fpn feature extractor
      
      * draft for faster rcnn resnet v1 fpn feature extractor
      
      * add seperated class for resnet 50 101 152
      
      * draft for get_box_classifier_feature_extractor_model
      
      * remove unused code
      
      * Init test file for faster_rcnn_fpn_keras_feature extractor
      
      * add unit test for get_proposal_feature_extractor_model
      
      * add unit test for get_proposal_feature_extractor_model smaller input size
      
      * add unit test for get_proposal_feature_extractor_model incorrect dimension
      
      * change keras model output format
      
      * Update size on extract_proposal_features tests
      
      * change default fpn_min_level to 2
      
      * fix error in get_box_classifier_feature_extractor_model
      
      * add shape test for get_box_classifier_feature_extractor_model
      
      * fix coding style
      
      * Fix coding style for feature extractor.
      
      * add faster rcnn resnet v1 fpn feature extractor to model builder
      
      * rename fpn feature extractors
      
      * modify doc string for Feature extractor:
      
      drop word "implementation"
      
      * add todo in get_box_classifier_feature_extractor_model
      
      * remove enable_v2_behavior
      
      * drop unittest test_extract_proposal_features_dies_with_incorrect_rank_inputs
      
      * modify feature extractor name
      
      * remove min_depth and depth_multiplier feature
      
      * Add coarse layers for faster rcnn fpn keras model
      
      1. Add coarse layers
      2. Update corresponding unit test to check the size of the coarse layer
      is correct
      
      * change the default max_fpn_level to 6
      
      * change unittest since default max_fpn_level is change to 6
      3300fa04