- 21 Sep, 2018 1 commit
-
-
pkulzc authored
Release iNaturalist Species-trained models, refactor of evaluation, box predictor for object detection. (#5289) * Merged commit includes the following changes: 212389173 by Zhichao Lu: 1. Replace tf.boolean_mask with tf.where -- 212282646 by Zhichao Lu: 1. Fix a typo in model_builder.py and add a test to cover it. -- 212142989 by Zhichao Lu: Only resize masks in meta architecture if it has not already been resized in the input pipeline. -- 212136935 by Zhichao Lu: Choose matmul or native crop_and_resize in the model builder instead of faster r-cnn meta architecture. -- 211907984 by Zhichao Lu: Make eval input reader repeated field and update config util to handle this field. -- 211858098 by Zhichao Lu: Change the implementation of merge_boxes_with_multiple_labels. -- 211843915 by Zhichao Lu: Add Mobilenet v2 + FPN support. -- 211655076 by Zhichao Lu: Bug fix for generic keys in config overrides In generic configuration overrides, we had a duplicate entry for train_input_config and we were missing the eval_input_config and eval_config. This change also introduces testing for all config overrides. -- 211157501 by Zhichao Lu: Make the locally-modified conv defs a copy. So that it doesn't modify MobileNet conv defs globally for other code that transitively imports this package. -- 211112813 by Zhichao Lu: Refactoring visualization tools for Estimator's eval_metric_ops. This will make it easier for future models to take advantage of a single interface and mechanics. -- 211109571 by Zhichao Lu: A test decorator. -- 210747685 by Zhichao Lu: For FPN, when use_depthwise is set to true, use slightly modified mobilenet v1 config. -- 210723882 by Zhichao Lu: Integrating the losses mask into the meta architectures. When providing groundtruth, one can optionally specify annotation information (i.e. which images are labeled vs. unlabeled). For any image that is unlabeled, there is no loss accumulation. -- 210673675 by Zhichao Lu: Internal change. -- 210546590 by Zhichao Lu: Internal change. -- 210529752 by Zhichao Lu: Support batched inputs with ops.matmul_crop_and_resize. With this change the new inputs are images of shape [batch, heigh, width, depth] and boxes of shape [batch, num_boxes, 4]. The output tensor is of the shape [batch, num_boxes, crop_height, crop_width, depth]. -- 210485912 by Zhichao Lu: Fix TensorFlow version check in object_detection_tutorial.ipynb -- 210484076 by Zhichao Lu: Reduce TPU memory required for single image matmul_crop_and_resize. Using tf.einsum eliminates intermediate tensors, tiling and expansion. for an image of size [40, 40, 1024] and boxes of shape [300, 4] HBM memory usage goes down from 3.52G to 1.67G. -- 210468361 by Zhichao Lu: Remove PositiveAnchorLossCDF/NegativeAnchorLossCDF to resolve "Main thread is not in main loop error" issue in local training. -- 210100253 by Zhichao Lu: Pooling pyramid feature maps: add option to replace max pool with convolution layers. -- 209995842 by Zhichao Lu: Fix a bug which prevents variable sharing in Faster RCNN. -- 209965526 by Zhichao Lu: Add support for enabling export_to_tpu through the estimator. -- 209946440 by Zhichao Lu: Replace deprecated tf.train.Supervisor with tf.train.MonitoredSession. MonitoredSession also takes away the hassle of starting queue runners. -- 209888003 by Zhichao Lu: Implement function to handle data where source_id is not set. If the field source_id is found to be the empty string for any image during runtime, it will be replaced with a random string. This avoids hash-collisions on dataset where many examples do not have source_id set. Those hash-collisions have unintended site effects and may lead to bugs in the detection pipeline. -- 209842134 by Zhichao Lu: Converting loss mask into multiplier, rather than using it as a boolean mask (which changes tensor shape). This is necessary, since other utilities (e.g. hard example miner) require a loss matrix with the same dimensions as the original prediction tensor. -- 209768066 by Zhichao Lu: Adding ability to remove loss computation from specific images in a batch, via an optional boolean mask. -- 209722556 by Zhichao Lu: Remove dead code. (_USE_C_API was flipped to True by default in TensorFlow 1.8) -- 209701861 by Zhichao Lu: This CL cleans-up some tf.Example creation snippets, by reusing the convenient tf.train.Feature building functions in dataset_util. -- 209697893 by Zhichao Lu: Do not overwrite num_epoch for eval input. This leads to errors in some cases. -- 209694652 by Zhichao Lu: Sample boxes by jittering around the currently given boxes. -- 209550300 by Zhichao Lu: `create_category_index_from_labelmap()` function now accepts `use_display_name` parameter. Also added create_categories_from_labelmap function for convenience -- 209490273 by Zhichao Lu: Check result_dict type before accessing image_id via key. -- 209442529 by Zhichao Lu: Introducing the capability to sample examples for evaluation. This makes it easy to specify one full epoch of evaluation, or a subset (e.g. sample 1 of every N examples). -- 208941150 by Zhichao Lu: Adding the capability of exporting the results in json format. -- 208888798 by Zhichao Lu: Fixes wrong dictionary key for num_det_boxes_per_image. -- 208873549 by Zhichao Lu: Reduce the number of HLO ops created by matmul_crop_and_resize. Do not unroll along the channels dimension. Instead, transpose the input image dimensions, apply tf.matmul and transpose back. The number of HLO instructions for 1024 channels reduce from 12368 to 110. -- 208844315 by Zhichao Lu: Add an option to use tf.non_maximal_supression_padded in SSD post-process -- 208731380 by Zhichao Lu: Add field in box_predictor config to enable mask prediction and update builders accordingly. -- 208699405 by Zhichao Lu: This CL creates a keras-based multi-resolution feature map extractor. -- 208557208 by Zhichao Lu: Add TPU tests for Faster R-CNN Meta arch. * Tests that two_stage_predict and total_loss tests run successfully on TPU. * Small mods to multiclass_non_max_suppression to preserve static shapes. -- 208499278 by Zhichao Lu: This CL makes sure the Keras convolutional box predictor & head layers apply activation layers *after* normalization (as opposed to before). -- 208391694 by Zhichao Lu: Updating visualization tool to produce multiple evaluation images. -- 208275961 by Zhichao Lu: This CL adds a Keras version of the Convolutional Box Predictor, as well as more general infrastructure for making Keras Prediction heads & Keras box predictors. -- 208275585 by Zhichao Lu: This CL enables the Keras layer hyperparameter object to build a dedicated activation layer, and to disable activation by default in the op layer construction kwargs. This is necessary because in most cases the normalization layer must be applied before the activation layer. So, in Keras models we must set the convolution activation in a dedicated layer after normalization is applied, rather than setting it in the convolution layer construction args. -- 208263792 by Zhichao Lu: Add a new SSD mask meta arch that can predict masks for SSD models. Changes including: - overwrite loss function to add mask loss computation. - update ssd_meta_arch to handle masks if predicted in predict and postprocessing. -- 208000218 by Zhichao Lu: Make FasterRCNN choose static shape operations only in training mode. -- 207997797 by Zhichao Lu: Add static boolean_mask op to box_list_ops.py and use that in faster_rcnn_meta_arch.py to support use_static_shapes option. -- 207993460 by Zhichao Lu: Include FGVC detection models in model zoo. -- 207971213 by Zhichao Lu: remove the restriction to run tf.nn.top_k op on CPU -- 207961187 by Zhichao Lu: Build the first stage NMS function in the model builder and pass it to FasterRCNN meta arch. -- 207960608 by Zhichao Lu: Internal Change. -- 207927015 by Zhichao Lu: Have an option to use the TPU compatible NMS op cl/206673787, in the batch_multiclass_non_max_suppression function. On setting pad_to_max_output_size to true, the output nmsed boxes are padded to be of length max_size_per_class. This can be used in first stage Region Proposal Network in FasterRCNN model by setting the first_stage_nms_pad_to_max_proposals field to true in config proto. -- 207809668 by Zhichao Lu: Add option to use depthwise separable conv instead of conv2d in FPN and WeightSharedBoxPredictor. More specifically, there are two related configs: - SsdFeatureExtractor.use_depthwise - WeightSharedConvolutionalBoxPredictor.use_depthwise -- 207808651 by Zhichao Lu: Fix the static balanced positive negative sampler's TPU tests -- 207798658 by Zhichao Lu: Fixes a post-refactoring bug where the pre-prediction convolution layers in the convolutional box predictor are ignored. -- 207796470 by Zhichao Lu: Make slim endpoints visible in FasterRCNNMetaArch. -- 207787053 by Zhichao Lu: Refactor ssd_meta_arch so that the target assigner instance is passed into the SSDMetaArch constructor rather than constructed inside. -- PiperOrigin-RevId: 212389173 * Fix detection model zoo typo. * Modify tf example decoder to handle label maps with either `display_name` or `name` fields seamlessly. Currently, tf example decoder uses only `name` field to look up ids for class text field present in the data. This change uses both `display_name` and `name` fields in the label map to fetch ids for class text. PiperOrigin-RevId: 212672223 * Modify create_coco_tf_record tool to write out class text instead of class labels. PiperOrigin-RevId: 212679112 * Fix detection model zoo typo. PiperOrigin-RevId: 212715692 * Adding the following two optional flags to WeightSharedConvolutionalBoxHead: 1) In the box head, apply clipping to box encodings in the box head. 2) In the class head, apply sigmoid to class predictions at inference time. PiperOrigin-RevId: 212723242 * Support class confidences in merge boxes with multiple labels. PiperOrigin-RevId: 212884998 * Creates multiple eval specs for object detection. PiperOrigin-RevId: 212894556 * Set batch_norm on last layer in Mask Head to None. PiperOrigin-RevId: 213030087 * Enable bfloat16 training for object detection models. PiperOrigin-RevId: 213053547 * Skip padding op when unnecessary. PiperOrigin-RevId: 213065869 * Modify `Matchers` to use groundtruth weights before performing matching. Groundtruth weights tensor is used to indicate padding in groundtruth box tensor. It is handled in `TargetAssigner` by creating appropriate classification and regression target weights based on the groundtruth box each anchor matches to. However, options such as `force_match_all_rows` in `ArgmaxMatcher` force certain anchors to match to groundtruth boxes that are just paddings thereby reducing the number of anchors that could otherwise match to real groundtruth boxes. For single stage models like SSD the effect of this is negligible as there are two orders of magnitude more anchors than the number of padded groundtruth boxes. But for Faster R-CNN and Mask R-CNN where there are only 300 anchors in the second stage, a significant number of these match to groundtruth paddings reducing the number of anchors regressing to real groundtruth boxes degrading the performance severely. Therefore, this change introduces an additional boolean argument `valid_rows` to `Matcher.match` methods and the implementations now ignore such padded groudtruth boxes during matching. PiperOrigin-RevId: 213345395 * Add release note for iNaturalist Species trained models. PiperOrigin-RevId: 213347179 * Fix the bug of uninitialized gt_is_crowd_list variable. PiperOrigin-RevId: 213364858 * ...text exposed to open source public git repo... PiperOrigin-RevId: 213554260
-
- 20 Sep, 2018 1 commit
-
-
Souradip Mookerjee authored
-
- 19 Sep, 2018 2 commits
-
-
Barret Zoph authored
-
Aysar authored
-
- 11 Sep, 2018 2 commits
-
-
https://arxiv.org/abs/1805.06066Arsalan Mousavian authored
* adding implementation of https://arxiv.org/abs/1805.06066 * fixing typos and sentences in README
-
Martin Mauch authored
-
- 07 Sep, 2018 4 commits
-
-
Dieterich Lawson authored
-
Dieterich Lawson authored
-
Dieterich Lawson authored
-
Dieterich Lawson authored
-
- 02 Sep, 2018 1 commit
-
-
Mikael Souza authored
-
- 30 Aug, 2018 2 commits
-
-
Mark Daoust authored
-
Mark Daoust authored
-
- 27 Aug, 2018 1 commit
-
-
Rutger Roffel authored
* Fixed TensorFlow version check in object_detection_tutorial_ipynb * Changed the minimum version to 1.9.0 for the object detection notebook
-
- 23 Aug, 2018 2 commits
-
-
Wentao Xu authored
The bash script to submit training job for pets detection has runtime-version of 1.8. This will trigger `TypeError: non_max_suppression() got an unexpected keyword argument 'score_threshold'` on the Google Cloud since 1.8 and older does not support this keyword argument. Therefore, update this runtime version to 1.9, which is the most recent runtime version that is published on June 27, 2018. See https://github.com/tensorflow/models/issues/5056 https://cloud.google.com/ml-engine/docs/tensorflow/runtime-version-list
-
Cameron Rudnick authored
Updated model_lib to use min_score_threshold and max_num_boxes_to_visualize from the eval config.
-
- 15 Aug, 2018 1 commit
-
-
Malcolm Slaney authored
Added a pointer to a Colab that illustrates how to use the public AudioSet models to generate embeddings for user-specified sounds.
-
- 14 Aug, 2018 1 commit
-
-
MyungSung Kwak authored
change flag name to checkpoint_dir according to the variable name used by the checkpoint_utils within tensorflow python framework. The important point is that when run the run_eval script, an error occurs due to the different flag name. Signed-off-by:MyungSung Kwak <yesmung@gmail.com>
-
- 13 Aug, 2018 5 commits
-
-
Mark Daoust authored
-
Mark Daoust authored
-
Mark Daoust authored
-
Mark Daoust authored
-
Mark Daoust authored
-
- 10 Aug, 2018 2 commits
-
-
Taylor Robie authored
-
Raymond Yuan authored
-
- 09 Aug, 2018 1 commit
-
-
Jiang,Zhoulong authored
-
- 08 Aug, 2018 1 commit
-
-
pkulzc authored
* Merged commit includes the following changes: 207771702 by Zhichao Lu: Refactoring evaluation utilities so that it is easier to introduce new DetectionEvaluators with eval_metric_ops. -- 207758641 by Zhichao Lu: Require tensorflow version 1.9+ for running object detection API. -- 207641470 by Zhichao Lu: Clip `num_groundtruth_boxes` in pad_input_data_to_static_shapes() to `max_num_boxes`. This prevents a scenario where tensors are sliced to an invalid range in model_lib.unstack_batch(). -- 207621728 by Zhichao Lu: This CL adds a FreezableBatchNorm that inherits from the Keras BatchNormalization layer, but supports freezing the `training` parameter at construction time instead of having to do it in the `call` method. It also adds a method to the `KerasLayerHyperparams` class that will build an appropriate FreezableBatchNorm layer according to the hyperparameter configuration. If batch_norm is disabled, this method returns and Identity layer. These will be used to simplify the conversion to Keras APIs. -- 207610524 by Zhichao Lu: Update anchor generators and box predictors for python3 compatibility. -- 207585122 by Zhichao Lu: Refactoring convolutional box predictor into separate prediction heads. -- 207549305 by Zhichao Lu: Pass all 1s for batch weights if nothing is specified in GT. -- 207336575 by Zhichao Lu: Move the new argument 'target_assigner_instance' to the end of the list of arguments to the ssd_meta_arch constructor for backwards compatibility. -- 207327862 by Zhichao Lu: Enable support for float output in quantized custom op for postprocessing in SSD Mobilenet model. -- 207323154 by Zhichao Lu: Bug fix: change dict.iteritems() to dict.items() -- 207301109 by Zhichao Lu: Integrating expected_classification_loss_under_sampling op as an option in the ssd_meta_arch -- 207286221 by Zhichao Lu: Adding an option to weight regression loss with foreground scores from the ground truth labels. -- 207231739 by Zhichao Lu: Explicitly mentioning the argument names when calling the batch target assigner. -- 207206356 by Zhichao Lu: Add include_trainable_variables field to train config to better handle trainable variables. -- 207135930 by Zhichao Lu: Internal change. -- 206862541 by Zhichao Lu: Do not unpad the outputs from batch_non_max_suppression before sampling. Since BalancedPositiveNegativeSampler takes an indicator for valid positions to sample from we can pass the output from NMS directly into Sampler. -- PiperOrigin-RevId: 207771702 * Remove unused doc.
-
- 07 Aug, 2018 1 commit
-
-
Shojib authored
-
- 03 Aug, 2018 2 commits
-
-
Trieu Trinh authored
-
Suharsh Sivakumar authored
-
- 02 Aug, 2018 1 commit
-
-
Abdullah Alrasheed authored
`iteritems()` was removed from python3. `items()` does the same functionality so changing it will work in both python2 and python3. The only difference as far as I know is `iteritems()` returns a generator where `items` returns a list. But for this this code it will not make any difference where we are just changing the key of the dict to a string.
-
- 01 Aug, 2018 2 commits
-
-
pkulzc authored
* Merged commit includes the following changes: 206852642 by Zhichao Lu: Build the balanced_positive_negative_sampler in the model builder for FasterRCNN. Also adds an option to use the static implementation of the sampler. -- 206803260 by Zhichao Lu: Fixes a misplaced argument in resnet fpn feature extractor. -- 206682736 by Zhichao Lu: This CL modifies the SSD meta architecture to support both Slim-based and Keras-based box predictors, and begins preparation for Keras box predictor support in the other meta architectures. Concretely, this CL adds a new `KerasBoxPredictor` base class and makes the meta architectures appropriately call whichever box predictors they are using. We can switch the non-ssd meta architectures to fully support Keras box predictors once the Keras Convolutional Box Predictor CL is submitted. -- 206669634 by Zhichao Lu: Adds an alternate method for balanced positive negative sampler using static shapes. -- 206643278 by Zhichao Lu: This CL adds a Keras layer hyperparameter configuration object to the hyperparams_builder. It automatically converts from Slim layer hyperparameter configs to Keras layer hyperparameters. Namely, it: - Builds Keras initializers/regularizers instead of Slim ones - sets weights_regularizer/initializer to kernel_regularizer/initializer - converts batchnorm decay to momentum - converts Slim l2 regularizer weights to the equivalent Keras l2 weights This will be used in the conversion of object detection feature extractors & box predictors to newer Tensorflow APIs. -- 206611681 by Zhichao Lu: Internal changes. -- 206591619 by Zhichao Lu: Clip the to shape when the input tensors are larger than the expected padded static shape -- 206517644 by Zhichao Lu: Make MultiscaleGridAnchorGenerator more consistent with MultipleGridAnchorGenerator. -- 206415624 by Zhichao Lu: Make the hardcoded feature pyramid network (FPN) levels configurable for both SSD Resnet and SSD Mobilenet. -- 206398204 by Zhichao Lu: This CL modifies the SSD meta architecture to support both Slim-based and Keras-based feature extractors. This allows us to begin the conversion of object detection to newer Tensorflow APIs. -- 206213448 by Zhichao Lu: Adding a method to compute the expected classification loss by background/foreground weighting. -- 206204232 by Zhichao Lu: Adding the keypoint head to the Mask RCNN pipeline. -- 206200352 by Zhichao Lu: - Create Faster R-CNN target assigner in the model builder. This allows configuring matchers in Target assigner to use TPU compatible ops (tf.gather in this case) without any change in meta architecture. - As a +ve side effect of the refactoring, we can now re-use a single target assigner for all of second stage heads in Faster R-CNN. -- 206178206 by Zhichao Lu: Force ssd feature extractor builder to use keyword arguments so values won't be passed to wrong arguments. -- 206168297 by Zhichao Lu: Updating exporter to use freeze_graph.freeze_graph_with_def_protos rather than a homegrown version. -- 206080748 by Zhichao Lu: Merge external contributions. -- 206074460 by Zhichao Lu: Update to preprocessor to apply temperature and softmax to the multiclass scores on read. -- 205960802 by Zhichao Lu: Fixing a bug in hierarchical label expansion script. -- 205944686 by Zhichao Lu: Update exporter to support exporting quantized model. -- 205912529 by Zhichao Lu: Add a two stage matcher to allow for thresholding by one criteria and then argmaxing on the other. -- 205909017 by Zhichao Lu: Add test for grayscale image_resizer -- 205892801 by Zhichao Lu: Add flag to decide whether to apply batch norm to conv layers of weight shared box predictor. -- 205824449 by Zhichao Lu: make sure that by default mask rcnn box predictor predicts 2 stages. -- 205730139 by Zhichao Lu: Updating warning message to be more explicit about variable size mismatch. -- 205696992 by Zhichao Lu: Remove utils/ops.py's dependency on core/box_list_ops.py. This will allow re-using TPU compatible ops from utils/ops.py in core/box_list_ops.py. -- 205696867 by Zhichao Lu: Refactoring mask rcnn predictor so have each head in a separate file. This CL lets us to add new heads more easily in the future to mask rcnn. -- 205492073 by Zhichao Lu: Refactor R-FCN box predictor to be TPU compliant. - Change utils/ops.py:position_sensitive_crop_regions to operate on single image and set of boxes without `box_ind` - Add a batch version that operations on batches of images and batches of boxes. - Refactor R-FCN box predictor to use the batched version of position sensitive crop regions. -- 205453567 by Zhichao Lu: Fix bug that cannot export inference graph when write_inference_graph flag is True. -- 205316039 by Zhichao Lu: Changing input tensor name. -- 205256307 by Zhichao Lu: Fix model zoo links for quantized model. -- 205164432 by Zhichao Lu: Fixes eval error when label map contains non-ascii characters. -- 205129842 by Zhichao Lu: Adds a option to clip the anchors to the window size without filtering the overlapped boxes in Faster-RCNN -- 205094863 by Zhichao Lu: Update to label map util to allow the option of adding a background class and fill in gaps in the label map. Useful for using multiclass scores which require a complete label map with explicit background label. -- 204989032 by Zhichao Lu: Add tf.prof support to exporter. -- 204825267 by Zhichao Lu: Modify mask rcnn box predictor tests for TPU compatibility. -- 204778749 by Zhichao Lu: Remove score filtering from postprocessing.py and rely on filtering logic in tf.image.non_max_suppression -- 204775818 by Zhichao Lu: Python3 fixes for object_detection. -- 204745920 by Zhichao Lu: Object Detection Dataset visualization tool (documentation). -- 204686993 by Zhichao Lu: Internal changes. -- 204559667 by Zhichao Lu: Refactor box_predictor.py into multiple files. The abstract base class remains in the object_detection/core, The other classes have moved to a separate file each in object_detection/predictors -- 204552847 by Zhichao Lu: Update blog post link. -- 204508028 by Zhichao Lu: Bump down the batch size to 1024 to be a bit more tolerant to OOM and double the number of iterations. This job still converges to 20.5 mAP in 3 hours. -- PiperOrigin-RevId: 206852642 * Add original post-processing back. -
Raymond Yuan authored
* nst colab * downloaded py filed * Removed text. Use gdoc for reviewing text, py for code * update ipynb * Removed google3 imports and added images * nst update images * final updates * add github and colab links * removed py file again
-
- 31 Jul, 2018 2 commits
-
-
Raymond Yuan authored
-
Raymond Yuan authored
* nst colab * downloaded py filed * Removed text. Use gdoc for reviewing text, py for code * update ipynb * Removed google3 imports and added images * nst update images * final updates
-
- 30 Jul, 2018 1 commit
-
-
Raymond Yuan authored
-
- 26 Jul, 2018 3 commits
-
-
Raymond Yuan authored
-
Raymond Yuan authored
-
Chenxi Liu authored
* PiperOrigin-RevId: 201234832 * PiperOrigin-RevId: 202507333 * PiperOrigin-RevId: 204320344 * Add PNASNet-5 mobile network model and cell structure. PiperOrigin-RevId: 204735410 * Add option to customize individual projection layer activation. PiperOrigin-RevId: 204776951
-
- 24 Jul, 2018 1 commit
-
-
Mohammad Norouzi authored
-