Commit e43d75f3 authored by anivegesana's avatar anivegesana
Browse files

Lint YOLO backbone and building block code

parent 5122a448
...@@ -6,11 +6,13 @@ from official.modeling import hyperparams ...@@ -6,11 +6,13 @@ from official.modeling import hyperparams
from official.vision.beta.configs import backbones from official.vision.beta.configs import backbones
@dataclasses.dataclass @dataclasses.dataclass
class DarkNet(hyperparams.Config): class DarkNet(hyperparams.Config):
"""DarkNet config.""" """DarkNet config."""
model_id: str = "darknet53" model_id: str = "darknet53"
@dataclasses.dataclass @dataclasses.dataclass
class Backbone(backbones.Backbone): class Backbone(backbones.Backbone):
darknet: DarkNet = DarkNet() darknet: DarkNet = DarkNet()
...@@ -5,69 +5,70 @@ from ._DarkConv import DarkConv ...@@ -5,69 +5,70 @@ from ._DarkConv import DarkConv
@ks.utils.register_keras_serializable(package='yolo') @ks.utils.register_keras_serializable(package='yolo')
class CSPConnect(ks.layers.Layer): class CSPConnect(ks.layers.Layer):
def __init__(
self,
filters,
filter_reduce=2,
activation="mish",
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
bias_regularizer=None,
weight_decay=None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
**kwargs):
super().__init__(**kwargs) def __init__(
#layer params self,
self._filters = filters filters,
self._filter_reduce = filter_reduce filter_reduce=2,
self._activation = activation activation="mish",
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
bias_regularizer=None,
weight_decay=None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
**kwargs):
#convoultion params super().__init__(**kwargs)
self._kernel_initializer = kernel_initializer #layer params
self._bias_initializer = bias_initializer self._filters = filters
self._weight_decay = weight_decay self._filter_reduce = filter_reduce
self._bias_regularizer = bias_regularizer self._activation = activation
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
return
def build(self, input_shape): #convoultion params
self._conv1 = DarkConv(filters=self._filters // self._filter_reduce, self._kernel_initializer = kernel_initializer
kernel_size=(1, 1), self._bias_initializer = bias_initializer
strides=(1, 1), self._weight_decay = weight_decay
kernel_initializer=self._kernel_initializer, self._bias_regularizer = bias_regularizer
bias_initializer=self._bias_initializer, self._use_bn = use_bn
bias_regularizer=self._bias_regularizer, self._use_sync_bn = use_sync_bn
weight_decay=self._weight_decay, self._norm_moment = norm_momentum
use_bn=self._use_bn, self._norm_epsilon = norm_epsilon
use_sync_bn=self._use_sync_bn, return
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
self._concat = ks.layers.Concatenate(axis=-1)
self._conv2 = DarkConv(filters=self._filters,
kernel_size=(1, 1),
strides=(1, 1),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
return
def call(self, inputs): def build(self, input_shape):
x_prev, x_csp = inputs self._conv1 = DarkConv(filters=self._filters // self._filter_reduce,
x = self._conv1(x_prev) kernel_size=(1, 1),
x = self._concat([x, x_csp]) strides=(1, 1),
x = self._conv2(x) kernel_initializer=self._kernel_initializer,
return x bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
self._concat = ks.layers.Concatenate(axis=-1)
self._conv2 = DarkConv(filters=self._filters,
kernel_size=(1, 1),
strides=(1, 1),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
return
def call(self, inputs):
x_prev, x_csp = inputs
x = self._conv1(x_prev)
x = self._concat([x, x_csp])
x = self._conv2(x)
return x
...@@ -5,80 +5,81 @@ from ._DarkConv import DarkConv ...@@ -5,80 +5,81 @@ from ._DarkConv import DarkConv
@ks.utils.register_keras_serializable(package='yolo') @ks.utils.register_keras_serializable(package='yolo')
class CSPDownSample(ks.layers.Layer): class CSPDownSample(ks.layers.Layer):
def __init__(
self,
filters,
filter_reduce=2,
activation="mish",
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
bias_regularizer=None,
weight_decay=None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
**kwargs):
super().__init__(**kwargs) def __init__(
#layer params self,
self._filters = filters filters,
self._filter_reduce = filter_reduce filter_reduce=2,
self._activation = activation activation="mish",
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
bias_regularizer=None,
weight_decay=None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
**kwargs):
#convoultion params super().__init__(**kwargs)
self._kernel_initializer = kernel_initializer #layer params
self._bias_initializer = bias_initializer self._filters = filters
self._weight_decay = weight_decay self._filter_reduce = filter_reduce
self._bias_regularizer = bias_regularizer self._activation = activation
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
return
def build(self, input_shape): #convoultion params
self._conv1 = DarkConv(filters=self._filters, self._kernel_initializer = kernel_initializer
kernel_size=(3, 3), self._bias_initializer = bias_initializer
strides=(2, 2), self._weight_decay = weight_decay
kernel_initializer=self._kernel_initializer, self._bias_regularizer = bias_regularizer
bias_initializer=self._bias_initializer, self._use_bn = use_bn
bias_regularizer=self._bias_regularizer, self._use_sync_bn = use_sync_bn
weight_decay=self._weight_decay, self._norm_moment = norm_momentum
use_bn=self._use_bn, self._norm_epsilon = norm_epsilon
use_sync_bn=self._use_sync_bn, return
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
self._conv2 = DarkConv(filters=self._filters // self._filter_reduce,
kernel_size=(1, 1),
strides=(1, 1),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
self._conv3 = DarkConv(filters=self._filters // self._filter_reduce, def build(self, input_shape):
kernel_size=(1, 1), self._conv1 = DarkConv(filters=self._filters,
strides=(1, 1), kernel_size=(3, 3),
kernel_initializer=self._kernel_initializer, strides=(2, 2),
bias_initializer=self._bias_initializer, kernel_initializer=self._kernel_initializer,
bias_regularizer=self._bias_regularizer, bias_initializer=self._bias_initializer,
weight_decay=self._weight_decay, bias_regularizer=self._bias_regularizer,
use_bn=self._use_bn, weight_decay=self._weight_decay,
use_sync_bn=self._use_sync_bn, use_bn=self._use_bn,
norm_momentum=self._norm_moment, use_sync_bn=self._use_sync_bn,
norm_epsilon=self._norm_epsilon, norm_momentum=self._norm_moment,
activation=self._activation) norm_epsilon=self._norm_epsilon,
return activation=self._activation)
self._conv2 = DarkConv(filters=self._filters // self._filter_reduce,
kernel_size=(1, 1),
strides=(1, 1),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
def call(self, inputs): self._conv3 = DarkConv(filters=self._filters // self._filter_reduce,
x = self._conv1(inputs) kernel_size=(1, 1),
y = self._conv2(x) strides=(1, 1),
x = self._conv3(x) kernel_initializer=self._kernel_initializer,
return (x, y) bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
return
def call(self, inputs):
x = self._conv1(inputs)
y = self._conv2(x)
x = self._conv3(x)
return (x, y)
...@@ -3,152 +3,154 @@ import tensorflow as tf ...@@ -3,152 +3,154 @@ import tensorflow as tf
import tensorflow.keras as ks import tensorflow.keras as ks
from ._DarkConv import DarkConv from ._DarkConv import DarkConv
@ks.utils.register_keras_serializable(package='yolo') @ks.utils.register_keras_serializable(package='yolo')
class CSPTiny(ks.layers.Layer): class CSPTiny(ks.layers.Layer):
def __init__(self,
filters=1,
use_bias=True,
kernel_initializer = 'glorot_uniform',
bias_initializer = 'zeros',
bias_regularizer = None,
weight_decay= None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
group_id = 1,
groups = 2,
norm_momentum=0.99,
norm_epsilon=0.001,
activation='leaky',
downsample = True,
leaky_alpha=0.1,
**kwargs):
# darkconv params def __init__(
self._filters = filters self,
self._use_bias = use_bias filters=1,
self._kernel_initializer = kernel_initializer use_bias=True,
self._bias_initializer = bias_initializer kernel_initializer='glorot_uniform',
self._bias_regularizer = bias_regularizer bias_initializer='zeros',
self._use_bn = use_bn bias_regularizer=None,
self._use_sync_bn = use_sync_bn weight_decay=None, # default find where is it is stated
self._weight_decay=weight_decay use_bn=True,
self._groups = groups use_sync_bn=False,
self._group_id = group_id group_id=1,
self._downsample = downsample groups=2,
norm_momentum=0.99,
norm_epsilon=0.001,
activation='leaky',
downsample=True,
leaky_alpha=0.1,
**kwargs):
# darkconv params
self._filters = filters
self._use_bias = use_bias
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._bias_regularizer = bias_regularizer
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._weight_decay = weight_decay
self._groups = groups
self._group_id = group_id
self._downsample = downsample
# normal params
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
# normal params # activation params
self._norm_moment = norm_momentum self._conv_activation = activation
self._norm_epsilon = norm_epsilon self._leaky_alpha = leaky_alpha
# activation params super().__init__(**kwargs)
self._conv_activation = activation return
self._leaky_alpha = leaky_alpha
super().__init__(**kwargs) def build(self, input_shape):
return self._convlayer1 = DarkConv(filters=self._filters,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
def build(self, input_shape): self._convlayer2 = DarkConv(filters=self._filters // 2,
self._convlayer1 = DarkConv(filters=self._filters, kernel_size=(3, 3),
kernel_size=(3, 3), strides=(1, 1),
strides=(1, 1), padding='same',
padding='same', use_bias=self._use_bias,
use_bias=self._use_bias, kernel_initializer=self._kernel_initializer,
kernel_initializer=self._kernel_initializer, bias_initializer=self._bias_initializer,
bias_initializer=self._bias_initializer, bias_regularizer=self._bias_regularizer,
bias_regularizer = self._bias_regularizer, weight_decay=self._weight_decay,
weight_decay=self._weight_decay, use_bn=self._use_bn,
use_bn=self._use_bn, use_sync_bn=self._use_sync_bn,
use_sync_bn=self._use_sync_bn, norm_momentum=self._norm_moment,
norm_momentum=self._norm_moment, norm_epsilon=self._norm_epsilon,
norm_epsilon=self._norm_epsilon, activation=self._conv_activation,
activation=self._conv_activation, leaky_alpha=self._leaky_alpha)
leaky_alpha=self._leaky_alpha)
self._convlayer2 = DarkConv(filters=self._filters//2, self._convlayer3 = DarkConv(filters=self._filters // 2,
kernel_size=(3, 3), kernel_size=(3, 3),
strides=(1, 1), strides=(1, 1),
padding='same', padding='same',
use_bias=self._use_bias, use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer, kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer, bias_initializer=self._bias_initializer,
bias_regularizer = self._bias_regularizer, bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay, weight_decay=self._weight_decay,
use_bn=self._use_bn, use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn, use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment, norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon, norm_epsilon=self._norm_epsilon,
activation=self._conv_activation, activation=self._conv_activation,
leaky_alpha=self._leaky_alpha) leaky_alpha=self._leaky_alpha)
self._convlayer3 = DarkConv(filters=self._filters//2,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer = self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
self._convlayer4 = DarkConv(filters=self._filters, self._convlayer4 = DarkConv(filters=self._filters,
kernel_size=(1, 1), kernel_size=(1, 1),
strides=(1, 1), strides=(1, 1),
padding='same', padding='same',
use_bias=self._use_bias, use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer, kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer, bias_initializer=self._bias_initializer,
bias_regularizer = self._bias_regularizer, bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay, weight_decay=self._weight_decay,
use_bn=self._use_bn, use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn, use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment, norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon, norm_epsilon=self._norm_epsilon,
activation=self._conv_activation, activation=self._conv_activation,
leaky_alpha=self._leaky_alpha) leaky_alpha=self._leaky_alpha)
self._maxpool = tf.keras.layers.MaxPool2D(pool_size=2, self._maxpool = tf.keras.layers.MaxPool2D(pool_size=2,
strides=2, strides=2,
padding="same", padding="same",
data_format=None) data_format=None)
super().build(input_shape) super().build(input_shape)
return return
def call(self, inputs): def call(self, inputs):
x1 = self._convlayer1(inputs) x1 = self._convlayer1(inputs)
x2 = tf.split(x1, self._groups, axis = -1) x2 = tf.split(x1, self._groups, axis=-1)
x3 = self._convlayer2(x2[self._group_id]) x3 = self._convlayer2(x2[self._group_id])
x4 = self._convlayer3(x3) x4 = self._convlayer3(x3)
x5 = tf.concat([x4, x3], axis = -1) x5 = tf.concat([x4, x3], axis=-1)
x6 = self._convlayer4(x5) x6 = self._convlayer4(x5)
x = tf.concat([x1, x6], axis = - 1) x = tf.concat([x1, x6], axis=-1)
if self._downsample: if self._downsample:
x = self._maxpool(x) x = self._maxpool(x)
return x, x6 return x, x6
def get_config(self): def get_config(self):
# used to store/share parameters to reconsturct the model # used to store/share parameters to reconsturct the model
layer_config = { layer_config = {
"filters": self._filters, "filters": self._filters,
"use_bias": self._use_bias, "use_bias": self._use_bias,
"strides": self._strides, "strides": self._strides,
"kernel_initializer": self._kernel_initializer, "kernel_initializer": self._kernel_initializer,
"bias_initializer": self._bias_initializer, "bias_initializer": self._bias_initializer,
"weight_decay": self._weight_decay, "weight_decay": self._weight_decay,
"use_bn": self._use_bn, "use_bn": self._use_bn,
"use_sync_bn": self._use_sync_bn, "use_sync_bn": self._use_sync_bn,
"norm_moment": self._norm_moment, "norm_moment": self._norm_moment,
"norm_epsilon": self._norm_epsilon, "norm_epsilon": self._norm_epsilon,
"activation": self._conv_activation, "activation": self._conv_activation,
"leaky_alpha": self._leaky_alpha, "leaky_alpha": self._leaky_alpha,
"sc_activation": self._sc_activation, "sc_activation": self._sc_activation,
} }
layer_config.update(super().get_config()) layer_config.update(super().get_config())
return layer_config return layer_config
...@@ -11,26 +11,27 @@ from yolo.modeling.functions.mish_activation import mish ...@@ -11,26 +11,27 @@ from yolo.modeling.functions.mish_activation import mish
@ks.utils.register_keras_serializable(package='yolo') @ks.utils.register_keras_serializable(package='yolo')
class DarkConv(ks.layers.Layer): class DarkConv(ks.layers.Layer):
def __init__(
self, def __init__(
filters=1, self,
kernel_size=(1, 1), filters=1,
strides=(1, 1), kernel_size=(1, 1),
padding='same', strides=(1, 1),
dilation_rate=(1, 1), padding='same',
use_bias=True, dilation_rate=(1, 1),
kernel_initializer='glorot_uniform', use_bias=True,
bias_initializer='zeros', kernel_initializer='glorot_uniform',
bias_regularizer=None, bias_initializer='zeros',
weight_decay=None, # default find where is it is stated bias_regularizer=None,
use_bn=True, weight_decay=None, # default find where is it is stated
use_sync_bn=False, use_bn=True,
norm_momentum=0.99, use_sync_bn=False,
norm_epsilon=0.001, norm_momentum=0.99,
activation='leaky', norm_epsilon=0.001,
leaky_alpha=0.1, activation='leaky',
**kwargs): leaky_alpha=0.1,
''' **kwargs):
'''
Modified Convolution layer to match that of the DarkNet Library Modified Convolution layer to match that of the DarkNet Library
Args: Args:
...@@ -56,120 +57,118 @@ class DarkConv(ks.layers.Layer): ...@@ -56,120 +57,118 @@ class DarkConv(ks.layers.Layer):
''' '''
# convolution params # convolution params
self._filters = filters self._filters = filters
self._kernel_size = kernel_size self._kernel_size = kernel_size
self._strides = strides self._strides = strides
self._padding = padding self._padding = padding
self._dilation_rate = dilation_rate self._dilation_rate = dilation_rate
self._use_bias = use_bias self._use_bias = use_bias
self._kernel_initializer = kernel_initializer self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer self._bias_initializer = bias_initializer
self._weight_decay = weight_decay self._weight_decay = weight_decay
self._bias_regularizer = bias_regularizer self._bias_regularizer = bias_regularizer
# batchnorm params # batchnorm params
self._use_bn = use_bn self._use_bn = use_bn
if self._use_bn: if self._use_bn:
self._use_bias = False self._use_bias = False
self._use_sync_bn = use_sync_bn self._use_sync_bn = use_sync_bn
self._norm_moment = norm_momentum self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon self._norm_epsilon = norm_epsilon
if tf.keras.backend.image_data_format() == 'channels_last': if tf.keras.backend.image_data_format() == 'channels_last':
# format: (batch_size, height, width, channels) # format: (batch_size, height, width, channels)
self._bn_axis = -1 self._bn_axis = -1
else: else:
# format: (batch_size, channels, width, height) # format: (batch_size, channels, width, height)
self._bn_axis = 1 self._bn_axis = 1
# activation params # activation params
if activation is None: if activation is None:
self._activation = 'linear' self._activation = 'linear'
else: else:
self._activation = activation self._activation = activation
self._leaky_alpha = leaky_alpha self._leaky_alpha = leaky_alpha
super(DarkConv, self).__init__(**kwargs) super(DarkConv, self).__init__(**kwargs)
return return
def build(self, input_shape): def build(self, input_shape):
kernel_size = self._kernel_size if type( kernel_size = self._kernel_size if type(
self._kernel_size) == int else self._kernel_size[0] self._kernel_size) == int else self._kernel_size[0]
if self._padding == "same" and kernel_size != 1: if self._padding == "same" and kernel_size != 1:
self._zeropad = ks.layers.ZeroPadding2D( self._zeropad = ks.layers.ZeroPadding2D(
((1, 1), (1, 1))) # symetric padding ((1, 1), (1, 1))) # symetric padding
else: else:
self._zeropad = Identity() self._zeropad = Identity()
self.conv = ks.layers.Conv2D( self.conv = ks.layers.Conv2D(
filters=self._filters, filters=self._filters,
kernel_size=self._kernel_size, kernel_size=self._kernel_size,
strides=self._strides, strides=self._strides,
padding="valid", #self._padding, padding="valid", #self._padding,
dilation_rate=self._dilation_rate, dilation_rate=self._dilation_rate,
use_bias=self._use_bias, use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer, kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer, bias_initializer=self._bias_initializer,
kernel_regularizer=self._weight_decay, kernel_regularizer=self._weight_decay,
bias_regularizer=self._bias_regularizer) bias_regularizer=self._bias_regularizer)
#self.conv =tf.nn.convolution(filters=self._filters, strides=self._strides, padding=self._padding #self.conv =tf.nn.convolution(filters=self._filters, strides=self._strides, padding=self._padding
if self._use_bn: if self._use_bn:
if self._use_sync_bn: if self._use_sync_bn:
self.bn = tf.keras.layers.experimental.SyncBatchNormalization( self.bn = tf.keras.layers.experimental.SyncBatchNormalization(
momentum=self._norm_moment, momentum=self._norm_moment,
epsilon=self._norm_epsilon, epsilon=self._norm_epsilon,
axis=self._bn_axis) axis=self._bn_axis)
else: else:
self.bn = ks.layers.BatchNormalization( self.bn = ks.layers.BatchNormalization(momentum=self._norm_moment,
momentum=self._norm_moment, epsilon=self._norm_epsilon,
epsilon=self._norm_epsilon, axis=self._bn_axis)
axis=self._bn_axis) else:
else: self.bn = Identity()
self.bn = Identity()
if self._activation == 'leaky':
if self._activation == 'leaky': alpha = {"alpha": self._leaky_alpha}
alpha = {"alpha": self._leaky_alpha} self._activation_fn = partial(tf.nn.leaky_relu, **alpha)
self._activation_fn = partial(tf.nn.leaky_relu, **alpha) elif self._activation == 'mish':
elif self._activation == 'mish': self._activation_fn = mish()
self._activation_fn = mish() else:
else: self._activation_fn = ks.layers.Activation(activation=self._activation)
self._activation_fn = ks.layers.Activation(
activation=self._activation) super(DarkConv, self).build(input_shape)
return
super(DarkConv, self).build(input_shape)
return def call(self, inputs):
x = self._zeropad(inputs)
def call(self, inputs): x = self.conv(x)
x = self._zeropad(inputs) x = self.bn(x)
x = self.conv(x) x = self._activation_fn(x)
x = self.bn(x) return x
x = self._activation_fn(x)
return x def get_config(self):
# used to store/share parameters to reconsturct the model
def get_config(self): layer_config = {
# used to store/share parameters to reconsturct the model "filters": self._filters,
layer_config = { "kernel_size": self._kernel_size,
"filters": self._filters, "strides": self._strides,
"kernel_size": self._kernel_size, "padding": self._padding,
"strides": self._strides, "dilation_rate": self._dilation_rate,
"padding": self._padding, "use_bias": self._use_bias,
"dilation_rate": self._dilation_rate, "kernel_initializer": self._kernel_initializer,
"use_bias": self._use_bias, "bias_initializer": self._bias_initializer,
"kernel_initializer": self._kernel_initializer, "bias_regularizer": self._bias_regularizer,
"bias_initializer": self._bias_initializer, "l2_regularization": self._l2_regularization,
"bias_regularizer": self._bias_regularizer, "use_bn": self._use_bn,
"l2_regularization": self._l2_regularization, "use_sync_bn": self._use_sync_bn,
"use_bn": self._use_bn, "norm_moment": self._norm_moment,
"use_sync_bn": self._use_sync_bn, "norm_epsilon": self._norm_epsilon,
"norm_moment": self._norm_moment, "activation": self._activation,
"norm_epsilon": self._norm_epsilon, "leaky_alpha": self._leaky_alpha
"activation": self._activation, }
"leaky_alpha": self._leaky_alpha layer_config.update(super(DarkConv, self).get_config())
} return layer_config
layer_config.update(super(DarkConv, self).get_config())
return layer_config def __repr__(self):
return repr(self.get_config())
def __repr__(self):
return repr(self.get_config())
...@@ -7,24 +7,25 @@ from ._Identity import Identity ...@@ -7,24 +7,25 @@ from ._Identity import Identity
@ks.utils.register_keras_serializable(package='yolo') @ks.utils.register_keras_serializable(package='yolo')
class DarkResidual(ks.layers.Layer): class DarkResidual(ks.layers.Layer):
def __init__(self,
filters=1, def __init__(self,
filter_scale=2, filters=1,
use_bias=True, filter_scale=2,
kernel_initializer='glorot_uniform', use_bias=True,
bias_initializer='zeros', kernel_initializer='glorot_uniform',
weight_decay= None, bias_initializer='zeros',
bias_regularizer = None, weight_decay=None,
use_bn=True, bias_regularizer=None,
use_sync_bn=False, use_bn=True,
norm_momentum=0.99, use_sync_bn=False,
norm_epsilon=0.001, norm_momentum=0.99,
activation='leaky', norm_epsilon=0.001,
leaky_alpha=0.1, activation='leaky',
sc_activation='linear', leaky_alpha=0.1,
downsample=False, sc_activation='linear',
**kwargs): downsample=False,
''' **kwargs):
'''
DarkNet block with Residual connection for Yolo v3 Backbone DarkNet block with Residual connection for Yolo v3 Backbone
Args: Args:
...@@ -46,113 +47,112 @@ class DarkResidual(ks.layers.Layer): ...@@ -46,113 +47,112 @@ class DarkResidual(ks.layers.Layer):
**kwargs: Keyword Arguments **kwargs: Keyword Arguments
''' '''
# downsample # downsample
self._downsample = downsample self._downsample = downsample
# darkconv params # darkconv params
self._filters = filters self._filters = filters
self._filter_scale = filter_scale self._filter_scale = filter_scale
self._use_bias = use_bias self._use_bias = use_bias
self._kernel_initializer = kernel_initializer self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer self._bias_initializer = bias_initializer
self._bias_regularizer = bias_regularizer self._bias_regularizer = bias_regularizer
self._use_bn = use_bn self._use_bn = use_bn
self._use_sync_bn = use_sync_bn self._use_sync_bn = use_sync_bn
self._weight_decay=weight_decay self._weight_decay = weight_decay
# normal params # normal params
self._norm_moment = norm_momentum self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon self._norm_epsilon = norm_epsilon
# activation params # activation params
self._conv_activation = activation self._conv_activation = activation
self._leaky_alpha = leaky_alpha self._leaky_alpha = leaky_alpha
self._sc_activation = sc_activation self._sc_activation = sc_activation
super().__init__(**kwargs) super().__init__(**kwargs)
return return
def build(self, input_shape): def build(self, input_shape):
if self._downsample: if self._downsample:
self._dconv = DarkConv(filters=self._filters, self._dconv = DarkConv(filters=self._filters,
kernel_size=(3, 3), kernel_size=(3, 3),
strides=(2, 2), strides=(2, 2),
padding='same', padding='same',
use_bias=self._use_bias, use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer, kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer, bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer, bias_regularizer=self._bias_regularizer,
use_bn=self._use_bn, use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn, use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment, norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon, norm_epsilon=self._norm_epsilon,
activation=self._conv_activation, activation=self._conv_activation,
weight_decay=self._weight_decay, weight_decay=self._weight_decay,
leaky_alpha=self._leaky_alpha) leaky_alpha=self._leaky_alpha)
else: else:
self._dconv = Identity() self._dconv = Identity()
self._conv1 = DarkConv(filters=self._filters // self._filter_scale, self._conv1 = DarkConv(filters=self._filters // self._filter_scale,
kernel_size=(1, 1), kernel_size=(1, 1),
strides=(1, 1), strides=(1, 1),
padding='same', padding='same',
use_bias=self._use_bias, use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer, kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer, bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer, bias_regularizer=self._bias_regularizer,
use_bn=self._use_bn, use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn, use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment, norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon, norm_epsilon=self._norm_epsilon,
activation=self._conv_activation, activation=self._conv_activation,
weight_decay=self._weight_decay, weight_decay=self._weight_decay,
leaky_alpha=self._leaky_alpha) leaky_alpha=self._leaky_alpha)
self._conv2 = DarkConv(filters=self._filters, self._conv2 = DarkConv(filters=self._filters,
kernel_size=(3, 3), kernel_size=(3, 3),
strides=(1, 1), strides=(1, 1),
padding='same', padding='same',
use_bias=self._use_bias, use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer, kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer, bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer, bias_regularizer=self._bias_regularizer,
use_bn=self._use_bn, use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn, use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment, norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon, norm_epsilon=self._norm_epsilon,
activation=self._conv_activation, activation=self._conv_activation,
weight_decay=self._weight_decay, weight_decay=self._weight_decay,
leaky_alpha=self._leaky_alpha) leaky_alpha=self._leaky_alpha)
self._shortcut = ks.layers.Add() self._shortcut = ks.layers.Add()
self._activation_fn = ks.layers.Activation( self._activation_fn = ks.layers.Activation(activation=self._sc_activation)
activation=self._sc_activation)
super().build(input_shape) super().build(input_shape)
return return
def call(self, inputs): def call(self, inputs):
shortcut = self._dconv(inputs) shortcut = self._dconv(inputs)
x = self._conv1(shortcut) x = self._conv1(shortcut)
x = self._conv2(x) x = self._conv2(x)
x = self._shortcut([x, shortcut]) x = self._shortcut([x, shortcut])
return self._activation_fn(x) return self._activation_fn(x)
def get_config(self): def get_config(self):
# used to store/share parameters to reconsturct the model # used to store/share parameters to reconsturct the model
layer_config = { layer_config = {
"filters": self._filters, "filters": self._filters,
"use_bias": self._use_bias, "use_bias": self._use_bias,
"kernel_initializer": self._kernel_initializer, "kernel_initializer": self._kernel_initializer,
"bias_initializer": self._bias_initializer, "bias_initializer": self._bias_initializer,
"weight_decay": self._weight_decay, "weight_decay": self._weight_decay,
"use_bn": self._use_bn, "use_bn": self._use_bn,
"use_sync_bn": self._use_sync_bn, "use_sync_bn": self._use_sync_bn,
"norm_moment": self._norm_moment, "norm_moment": self._norm_moment,
"norm_epsilon": self._norm_epsilon, "norm_epsilon": self._norm_epsilon,
"activation": self._conv_activation, "activation": self._conv_activation,
"leaky_alpha": self._leaky_alpha, "leaky_alpha": self._leaky_alpha,
"sc_activation": self._sc_activation, "sc_activation": self._sc_activation,
"downsample": self._downsample "downsample": self._downsample
} }
layer_config.update(super().get_config()) layer_config.update(super().get_config())
return layer_config return layer_config
...@@ -6,98 +6,100 @@ from ._DarkConv import DarkConv ...@@ -6,98 +6,100 @@ from ._DarkConv import DarkConv
@ks.utils.register_keras_serializable(package='yolo') @ks.utils.register_keras_serializable(package='yolo')
class DarkTiny(ks.layers.Layer): class DarkTiny(ks.layers.Layer):
def __init__(self,
filters=1,
use_bias=True,
strides=2,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
bias_regularizer = None,
weight_decay= None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
activation='leaky',
leaky_alpha=0.1,
sc_activation='linear',
**kwargs):
# darkconv params def __init__(
self._filters = filters self,
self._use_bias = use_bias filters=1,
self._kernel_initializer = kernel_initializer use_bias=True,
self._bias_initializer = bias_initializer strides=2,
self._bias_regularizer=bias_regularizer kernel_initializer='glorot_uniform',
self._use_bn = use_bn bias_initializer='zeros',
self._use_sync_bn = use_sync_bn bias_regularizer=None,
self._strides = strides weight_decay=None, # default find where is it is stated
self._weight_decay=weight_decay use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
activation='leaky',
leaky_alpha=0.1,
sc_activation='linear',
**kwargs):
# normal params # darkconv params
self._norm_moment = norm_momentum self._filters = filters
self._norm_epsilon = norm_epsilon self._use_bias = use_bias
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._bias_regularizer = bias_regularizer
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._strides = strides
self._weight_decay = weight_decay
# activation params # normal params
self._conv_activation = activation self._norm_moment = norm_momentum
self._leaky_alpha = leaky_alpha self._norm_epsilon = norm_epsilon
self._sc_activation = sc_activation
super().__init__(**kwargs) # activation params
return self._conv_activation = activation
self._leaky_alpha = leaky_alpha
self._sc_activation = sc_activation
def build(self, input_shape): super().__init__(**kwargs)
# if self._strides == 2: return
# self._zeropad = ks.layers.ZeroPadding2D(((1,0), (1,0)))
# padding = "valid"
# else:
# self._zeropad = ks.layers.ZeroPadding2D(((0,1), (0,1)))#nn_blocks.Identity()#ks.layers.ZeroPadding2D(((1,0), (1,0)))
# padding = "valid"
self._maxpool = tf.keras.layers.MaxPool2D(pool_size=2,
strides=self._strides,
padding="same",
data_format=None)
self._convlayer = DarkConv(filters=self._filters, def build(self, input_shape):
kernel_size=(3, 3), # if self._strides == 2:
strides=(1, 1), # self._zeropad = ks.layers.ZeroPadding2D(((1,0), (1,0)))
padding='same', # padding = "valid"
use_bias=self._use_bias, # else:
kernel_initializer=self._kernel_initializer, # self._zeropad = ks.layers.ZeroPadding2D(((0,1), (0,1)))#nn_blocks.Identity()#ks.layers.ZeroPadding2D(((1,0), (1,0)))
bias_initializer=self._bias_initializer, # padding = "valid"
bias_regularizer=self._bias_regularizer, self._maxpool = tf.keras.layers.MaxPool2D(pool_size=2,
weight_decay=self._weight_decay, strides=self._strides,
use_bn=self._use_bn, padding="same",
use_sync_bn=self._use_sync_bn, data_format=None)
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
super().build(input_shape) self._convlayer = DarkConv(filters=self._filters,
return kernel_size=(3, 3),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
def call(self, inputs): super().build(input_shape)
output = self._maxpool(inputs) return
output = self._convlayer(output)
return output
def get_config(self): def call(self, inputs):
# used to store/share parameters to reconsturct the model output = self._maxpool(inputs)
layer_config = { output = self._convlayer(output)
"filters": self._filters, return output
"use_bias": self._use_bias,
"strides": self._strides, def get_config(self):
"kernel_initializer": self._kernel_initializer, # used to store/share parameters to reconsturct the model
"bias_initializer": self._bias_initializer, layer_config = {
"l2_regularization": self._l2_regularization, "filters": self._filters,
"use_bn": self._use_bn, "use_bias": self._use_bias,
"use_sync_bn": self._use_sync_bn, "strides": self._strides,
"norm_moment": self._norm_moment, "kernel_initializer": self._kernel_initializer,
"norm_epsilon": self._norm_epsilon, "bias_initializer": self._bias_initializer,
"activation": self._conv_activation, "l2_regularization": self._l2_regularization,
"leaky_alpha": self._leaky_alpha, "use_bn": self._use_bn,
"sc_activation": self._sc_activation, "use_sync_bn": self._use_sync_bn,
} "norm_moment": self._norm_moment,
layer_config.update(super().get_config()) "norm_epsilon": self._norm_epsilon,
return layer_config "activation": self._conv_activation,
"leaky_alpha": self._leaky_alpha,
"sc_activation": self._sc_activation,
}
layer_config.update(super().get_config())
return layer_config
...@@ -4,4 +4,3 @@ from ._DarkTiny import DarkTiny ...@@ -4,4 +4,3 @@ from ._DarkTiny import DarkTiny
from ._CSPConnect import CSPConnect from ._CSPConnect import CSPConnect
from ._CSPDownSample import CSPDownSample from ._CSPDownSample import CSPDownSample
from ._CSPTiny import CSPTiny from ._CSPTiny import CSPTiny
...@@ -8,48 +8,49 @@ from official.vision.beta.projects.yolo.modeling.building_blocks import CSPConne ...@@ -8,48 +8,49 @@ from official.vision.beta.projects.yolo.modeling.building_blocks import CSPConne
class CSPConnect(tf.test.TestCase, parameterized.TestCase): class CSPConnect(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(("same", 224, 224, 64, 1),
("downsample", 224, 224, 64, 2)) @parameterized.named_parameters(("same", 224, 224, 64, 1),
def test_pass_through(self, width, height, filters, mod): ("downsample", 224, 224, 64, 2))
x = ks.Input(shape=(width, height, filters)) def test_pass_through(self, width, height, filters, mod):
test_layer = layer(filters=filters, filter_reduce=mod) x = ks.Input(shape=(width, height, filters))
test_layer2 = layer_companion(filters=filters, filter_reduce=mod) test_layer = layer(filters=filters, filter_reduce=mod)
outx, px = test_layer(x) test_layer2 = layer_companion(filters=filters, filter_reduce=mod)
outx = test_layer2([outx, px]) outx, px = test_layer(x)
print(outx) outx = test_layer2([outx, px])
print(outx.shape.as_list()) print(outx)
self.assertAllEqual( print(outx.shape.as_list())
outx.shape.as_list(), self.assertAllEqual(
[None, np.ceil(width // 2), outx.shape.as_list(),
np.ceil(height // 2), (filters)]) [None, np.ceil(width // 2),
return np.ceil(height // 2), (filters)])
return
@parameterized.named_parameters(("same", 224, 224, 64, 1),
("downsample", 224, 224, 128, 2)) @parameterized.named_parameters(("same", 224, 224, 64, 1),
def test_gradient_pass_though(self, filters, width, height, mod): ("downsample", 224, 224, 128, 2))
loss = ks.losses.MeanSquaredError() def test_gradient_pass_though(self, filters, width, height, mod):
optimizer = ks.optimizers.SGD() loss = ks.losses.MeanSquaredError()
test_layer = layer(filters, filter_reduce=mod) optimizer = ks.optimizers.SGD()
path_layer = layer_companion(filters, filter_reduce=mod) test_layer = layer(filters, filter_reduce=mod)
path_layer = layer_companion(filters, filter_reduce=mod)
init = tf.random_normal_initializer()
x = tf.Variable(initial_value=init(shape=(1, width, height, filters), init = tf.random_normal_initializer()
dtype=tf.float32)) x = tf.Variable(
y = tf.Variable(initial_value=init(shape=(1, int(np.ceil(width // 2)), initial_value=init(shape=(1, width, height, filters), dtype=tf.float32))
int(np.ceil(height // 2)), y = tf.Variable(initial_value=init(shape=(1, int(np.ceil(width // 2)),
filters), int(np.ceil(height // 2)),
dtype=tf.float32)) filters),
dtype=tf.float32))
with tf.GradientTape() as tape:
x_hat, x_prev = test_layer(x) with tf.GradientTape() as tape:
x_hat = path_layer([x_hat, x_prev]) x_hat, x_prev = test_layer(x)
grad_loss = loss(x_hat, y) x_hat = path_layer([x_hat, x_prev])
grad = tape.gradient(grad_loss, test_layer.trainable_variables) grad_loss = loss(x_hat, y)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables)) grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad)
return self.assertNotIn(None, grad)
return
if __name__ == "__main__": if __name__ == "__main__":
tf.test.main() tf.test.main()
...@@ -6,48 +6,49 @@ from absl.testing import parameterized ...@@ -6,48 +6,49 @@ from absl.testing import parameterized
from official.vision.beta.projects.yolo.modeling.building_blocks import CSPDownSample as layer from official.vision.beta.projects.yolo.modeling.building_blocks import CSPDownSample as layer
from official.vision.beta.projects.yolo.modeling.building_blocks import CSPConnect as layer_companion from official.vision.beta.projects.yolo.modeling.building_blocks import CSPConnect as layer_companion
class CSPDownSample(tf.test.TestCase, parameterized.TestCase): class CSPDownSample(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(("same", 224, 224, 64, 1),
("downsample", 224, 224, 64, 2)) @parameterized.named_parameters(("same", 224, 224, 64, 1),
def test_pass_through(self, width, height, filters, mod): ("downsample", 224, 224, 64, 2))
x = ks.Input(shape=(width, height, filters)) def test_pass_through(self, width, height, filters, mod):
test_layer = layer(filters=filters, filter_reduce=mod) x = ks.Input(shape=(width, height, filters))
outx, px = test_layer(x) test_layer = layer(filters=filters, filter_reduce=mod)
print(outx) outx, px = test_layer(x)
print(outx.shape.as_list()) print(outx)
self.assertAllEqual( print(outx.shape.as_list())
outx.shape.as_list(), self.assertAllEqual(
[None, outx.shape.as_list(),
np.ceil(width // 2), [None, np.ceil(width // 2),
np.ceil(height // 2), (filters / mod)]) np.ceil(height // 2), (filters / mod)])
return return
@parameterized.named_parameters(("same", 224, 224, 64, 1), @parameterized.named_parameters(("same", 224, 224, 64, 1),
("downsample", 224, 224, 128, 2)) ("downsample", 224, 224, 128, 2))
def test_gradient_pass_though(self, filters, width, height, mod): def test_gradient_pass_though(self, filters, width, height, mod):
loss = ks.losses.MeanSquaredError() loss = ks.losses.MeanSquaredError()
optimizer = ks.optimizers.SGD() optimizer = ks.optimizers.SGD()
test_layer = layer(filters, filter_reduce=mod) test_layer = layer(filters, filter_reduce=mod)
path_layer = layer_companion(filters, filter_reduce=mod) path_layer = layer_companion(filters, filter_reduce=mod)
init = tf.random_normal_initializer() init = tf.random_normal_initializer()
x = tf.Variable(initial_value=init(shape=(1, width, height, filters), x = tf.Variable(
dtype=tf.float32)) initial_value=init(shape=(1, width, height, filters), dtype=tf.float32))
y = tf.Variable(initial_value=init(shape=(1, int(np.ceil(width // 2)), y = tf.Variable(initial_value=init(shape=(1, int(np.ceil(width // 2)),
int(np.ceil(height // 2)), int(np.ceil(height // 2)),
filters), filters),
dtype=tf.float32)) dtype=tf.float32))
with tf.GradientTape() as tape: with tf.GradientTape() as tape:
x_hat, x_prev = test_layer(x) x_hat, x_prev = test_layer(x)
x_hat = path_layer([x_hat, x_prev]) x_hat = path_layer([x_hat, x_prev])
grad_loss = loss(x_hat, y) grad_loss = loss(x_hat, y)
grad = tape.gradient(grad_loss, test_layer.trainable_variables) grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables)) optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad) self.assertNotIn(None, grad)
return return
if __name__ == "__main__": if __name__ == "__main__":
tf.test.main() tf.test.main()
...@@ -5,67 +5,68 @@ from absl.testing import parameterized ...@@ -5,67 +5,68 @@ from absl.testing import parameterized
from official.vision.beta.projects.yolo.modeling.building_blocks import DarkConv from official.vision.beta.projects.yolo.modeling.building_blocks import DarkConv
class DarkConvTest(tf.test.TestCase, parameterized.TestCase): class DarkConvTest(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(("valid", (3, 3), "valid", (1, 1)),
("same", (3, 3), "same", (1, 1)),
("downsample", (3, 3), "same", (2, 2)),
("test", (1, 1), "valid", (1, 1)))
def test_pass_through(self, kernel_size, padding, strides):
if padding == "same":
pad_const = 1
else:
pad_const = 0
x = ks.Input(shape=(224, 224, 3))
test_layer = DarkConv(filters=64,
kernel_size=kernel_size,
padding=padding,
strides=strides,
trainable=False)
outx = test_layer(x)
print(outx.shape.as_list())
test = [
None,
int((224 - kernel_size[0] + (2 * pad_const)) / strides[0] + 1),
int((224 - kernel_size[1] + (2 * pad_const)) / strides[1] + 1), 64
]
print(test)
self.assertAllEqual(outx.shape.as_list(), test)
return
@parameterized.named_parameters(("filters", 3)) @parameterized.named_parameters(
def test_gradient_pass_though(self, filters): ("valid", (3, 3), "valid", (1, 1)), ("same", (3, 3), "same", (1, 1)),
loss = ks.losses.MeanSquaredError() ("downsample", (3, 3), "same", (2, 2)), ("test", (1, 1), "valid", (1, 1)))
optimizer = ks.optimizers.SGD() def test_pass_through(self, kernel_size, padding, strides):
with tf.device("/CPU:0"): if padding == "same":
test_layer = DarkConv(filters, kernel_size=(3, 3), padding="same") pad_const = 1
else:
pad_const = 0
x = ks.Input(shape=(224, 224, 3))
test_layer = DarkConv(filters=64,
kernel_size=kernel_size,
padding=padding,
strides=strides,
trainable=False)
outx = test_layer(x)
print(outx.shape.as_list())
test = [
None,
int((224 - kernel_size[0] + (2 * pad_const)) / strides[0] + 1),
int((224 - kernel_size[1] + (2 * pad_const)) / strides[1] + 1), 64
]
print(test)
self.assertAllEqual(outx.shape.as_list(), test)
return
@parameterized.named_parameters(("filters", 3))
def test_gradient_pass_though(self, filters):
loss = ks.losses.MeanSquaredError()
optimizer = ks.optimizers.SGD()
with tf.device("/CPU:0"):
test_layer = DarkConv(filters, kernel_size=(3, 3), padding="same")
init = tf.random_normal_initializer() init = tf.random_normal_initializer()
x = tf.Variable( x = tf.Variable(initial_value=init(shape=(1, 224, 224,
initial_value=init(shape=(1, 224, 224, 3), dtype=tf.float32)) 3), dtype=tf.float32))
y = tf.Variable( y = tf.Variable(
initial_value=init(shape=(1, 224, 224, filters), dtype=tf.float32)) initial_value=init(shape=(1, 224, 224, filters), dtype=tf.float32))
with tf.GradientTape() as tape: with tf.GradientTape() as tape:
x_hat = test_layer(x) x_hat = test_layer(x)
grad_loss = loss(x_hat, y) grad_loss = loss(x_hat, y)
grad = tape.gradient(grad_loss, test_layer.trainable_variables) grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables)) optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad) self.assertNotIn(None, grad)
return return
# @parameterized.named_parameters(("filters", 3), ("filters", 20), ("filters", 512)) # @parameterized.named_parameters(("filters", 3), ("filters", 20), ("filters", 512))
# def test_time(self, filters): # def test_time(self, filters):
# # finish the test for time # # finish the test for time
# dataset = tfds.load("mnist") # dataset = tfds.load("mnist")
# model = ks.Sequential([ # model = ks.Sequential([
# DarkConv(7, kernel_size=(3,3), strides = (2,2), activation='relu'), # DarkConv(7, kernel_size=(3,3), strides = (2,2), activation='relu'),
# DarkConv(10, kernel_size=(3,3), strides = (2,2), activation='relu'), # DarkConv(10, kernel_size=(3,3), strides = (2,2), activation='relu'),
# DarkConv(filters, kernel_size=(3,3), strides = (1,1), activation='relu'), # DarkConv(filters, kernel_size=(3,3), strides = (1,1), activation='relu'),
# DarkConv(9, kernel_size=(3,3), strides = (2,2), activation='relu'), # DarkConv(9, kernel_size=(3,3), strides = (2,2), activation='relu'),
# ks.layers.GlobalAveragePooling2D(), # ks.layers.GlobalAveragePooling2D(),
# ks.layers.Dense(10, activation='softmax')], name='test') # ks.layers.Dense(10, activation='softmax')], name='test')
# return # return
if __name__ == "__main__": if __name__ == "__main__":
tf.test.main() tf.test.main()
...@@ -7,54 +7,55 @@ from official.vision.beta.projects.yolo.modeling.building_blocks import DarkResi ...@@ -7,54 +7,55 @@ from official.vision.beta.projects.yolo.modeling.building_blocks import DarkResi
class DarkResidualTest(tf.test.TestCase, parameterized.TestCase): class DarkResidualTest(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(("same", 224, 224, 64, False),
("downsample", 223, 223, 32, True), @parameterized.named_parameters(("same", 224, 224, 64, False),
("oddball", 223, 223, 32, False)) ("downsample", 223, 223, 32, True),
def test_pass_through(self, width, height, filters, downsample): ("oddball", 223, 223, 32, False))
mod = 1 def test_pass_through(self, width, height, filters, downsample):
if downsample: mod = 1
mod = 2 if downsample:
x = ks.Input(shape=(width, height, filters)) mod = 2
test_layer = layer(filters=filters, downsample=downsample) x = ks.Input(shape=(width, height, filters))
outx = test_layer(x) test_layer = layer(filters=filters, downsample=downsample)
print(outx) outx = test_layer(x)
print(outx.shape.as_list()) print(outx)
self.assertAllEqual( print(outx.shape.as_list())
outx.shape.as_list(), self.assertAllEqual(
[None, np.ceil(width / mod), outx.shape.as_list(),
np.ceil(height / mod), filters]) [None, np.ceil(width / mod),
return np.ceil(height / mod), filters])
return
@parameterized.named_parameters(("same", 64, 224, 224, False),
("downsample", 32, 223, 223, True), @parameterized.named_parameters(("same", 64, 224, 224, False),
("oddball", 32, 223, 223, False)) ("downsample", 32, 223, 223, True),
def test_gradient_pass_though(self, filters, width, height, downsample): ("oddball", 32, 223, 223, False))
loss = ks.losses.MeanSquaredError() def test_gradient_pass_though(self, filters, width, height, downsample):
optimizer = ks.optimizers.SGD() loss = ks.losses.MeanSquaredError()
test_layer = layer(filters, downsample=downsample) optimizer = ks.optimizers.SGD()
test_layer = layer(filters, downsample=downsample)
if downsample:
mod = 2 if downsample:
else: mod = 2
mod = 1 else:
mod = 1
init = tf.random_normal_initializer()
x = tf.Variable(initial_value=init(shape=(1, width, height, filters), init = tf.random_normal_initializer()
dtype=tf.float32)) x = tf.Variable(
y = tf.Variable(initial_value=init(shape=(1, int(np.ceil(width / mod)), initial_value=init(shape=(1, width, height, filters), dtype=tf.float32))
int(np.ceil(height / mod)), y = tf.Variable(initial_value=init(shape=(1, int(np.ceil(width / mod)),
filters), int(np.ceil(height / mod)),
dtype=tf.float32)) filters),
dtype=tf.float32))
with tf.GradientTape() as tape:
x_hat = test_layer(x) with tf.GradientTape() as tape:
grad_loss = loss(x_hat, y) x_hat = test_layer(x)
grad = tape.gradient(grad_loss, test_layer.trainable_variables) grad_loss = loss(x_hat, y)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables)) grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad)
return self.assertNotIn(None, grad)
return
if __name__ == "__main__": if __name__ == "__main__":
tf.test.main() tf.test.main()
...@@ -7,44 +7,44 @@ from official.vision.beta.projects.yolo.modeling.building_blocks import DarkTiny ...@@ -7,44 +7,44 @@ from official.vision.beta.projects.yolo.modeling.building_blocks import DarkTiny
class DarkTinyTest(tf.test.TestCase, parameterized.TestCase): class DarkTinyTest(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(("middle", 224, 224, 64, 2),
("last", 224, 224, 1024, 1)) @parameterized.named_parameters(("middle", 224, 224, 64, 2),
def test_pass_through(self, width, height, filters, strides): ("last", 224, 224, 1024, 1))
x = ks.Input(shape=(width, height, filters)) def test_pass_through(self, width, height, filters, strides):
test_layer = DarkTiny(filters=filters, strides=strides) x = ks.Input(shape=(width, height, filters))
outx = test_layer(x) test_layer = DarkTiny(filters=filters, strides=strides)
print(outx) outx = test_layer(x)
print(outx.shape.as_list()) print(outx)
self.assertEqual(width % strides, 0, msg="width % strides != 0") print(outx.shape.as_list())
self.assertEqual(height % strides, 0, msg="height % strides != 0") self.assertEqual(width % strides, 0, msg="width % strides != 0")
self.assertAllEqual( self.assertEqual(height % strides, 0, msg="height % strides != 0")
outx.shape.as_list(), self.assertAllEqual(outx.shape.as_list(),
[None, width // strides, height // strides, filters]) [None, width // strides, height // strides, filters])
return return
@parameterized.named_parameters(("middle", 224, 224, 64, 2), @parameterized.named_parameters(("middle", 224, 224, 64, 2),
("last", 224, 224, 1024, 1)) ("last", 224, 224, 1024, 1))
def test_gradient_pass_though(self, width, height, filters, strides): def test_gradient_pass_though(self, width, height, filters, strides):
loss = ks.losses.MeanSquaredError() loss = ks.losses.MeanSquaredError()
optimizer = ks.optimizers.SGD() optimizer = ks.optimizers.SGD()
test_layer = DarkTiny(filters=filters, strides=strides) test_layer = DarkTiny(filters=filters, strides=strides)
init = tf.random_normal_initializer() init = tf.random_normal_initializer()
x = tf.Variable(initial_value=init(shape=(1, width, height, filters), x = tf.Variable(
dtype=tf.float32)) initial_value=init(shape=(1, width, height, filters), dtype=tf.float32))
y = tf.Variable(initial_value=init(shape=(1, width // strides, y = tf.Variable(initial_value=init(shape=(1, width // strides,
height // strides, filters), height // strides, filters),
dtype=tf.float32)) dtype=tf.float32))
with tf.GradientTape() as tape: with tf.GradientTape() as tape:
x_hat = test_layer(x) x_hat = test_layer(x)
grad_loss = loss(x_hat, y) grad_loss = loss(x_hat, y)
grad = tape.gradient(grad_loss, test_layer.trainable_variables) grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables)) optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad) self.assertNotIn(None, grad)
return return
if __name__ == "__main__": if __name__ == "__main__":
tf.test.main() tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment