Commit e43d75f3 authored by anivegesana's avatar anivegesana
Browse files

Lint YOLO backbone and building block code

parent 5122a448
......@@ -6,11 +6,13 @@ from official.modeling import hyperparams
from official.vision.beta.configs import backbones
@dataclasses.dataclass
class DarkNet(hyperparams.Config):
"""DarkNet config."""
model_id: str = "darknet53"
"""DarkNet config."""
model_id: str = "darknet53"
@dataclasses.dataclass
class Backbone(backbones.Backbone):
darknet: DarkNet = DarkNet()
darknet: DarkNet = DarkNet()
......@@ -5,69 +5,70 @@ from ._DarkConv import DarkConv
@ks.utils.register_keras_serializable(package='yolo')
class CSPConnect(ks.layers.Layer):
def __init__(
self,
filters,
filter_reduce=2,
activation="mish",
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
bias_regularizer=None,
weight_decay=None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
**kwargs):
super().__init__(**kwargs)
#layer params
self._filters = filters
self._filter_reduce = filter_reduce
self._activation = activation
def __init__(
self,
filters,
filter_reduce=2,
activation="mish",
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
bias_regularizer=None,
weight_decay=None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
**kwargs):
#convoultion params
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._weight_decay = weight_decay
self._bias_regularizer = bias_regularizer
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
return
super().__init__(**kwargs)
#layer params
self._filters = filters
self._filter_reduce = filter_reduce
self._activation = activation
def build(self, input_shape):
self._conv1 = DarkConv(filters=self._filters // self._filter_reduce,
kernel_size=(1, 1),
strides=(1, 1),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
self._concat = ks.layers.Concatenate(axis=-1)
self._conv2 = DarkConv(filters=self._filters,
kernel_size=(1, 1),
strides=(1, 1),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
return
#convoultion params
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._weight_decay = weight_decay
self._bias_regularizer = bias_regularizer
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
return
def call(self, inputs):
x_prev, x_csp = inputs
x = self._conv1(x_prev)
x = self._concat([x, x_csp])
x = self._conv2(x)
return x
def build(self, input_shape):
self._conv1 = DarkConv(filters=self._filters // self._filter_reduce,
kernel_size=(1, 1),
strides=(1, 1),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
self._concat = ks.layers.Concatenate(axis=-1)
self._conv2 = DarkConv(filters=self._filters,
kernel_size=(1, 1),
strides=(1, 1),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
return
def call(self, inputs):
x_prev, x_csp = inputs
x = self._conv1(x_prev)
x = self._concat([x, x_csp])
x = self._conv2(x)
return x
......@@ -5,80 +5,81 @@ from ._DarkConv import DarkConv
@ks.utils.register_keras_serializable(package='yolo')
class CSPDownSample(ks.layers.Layer):
def __init__(
self,
filters,
filter_reduce=2,
activation="mish",
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
bias_regularizer=None,
weight_decay=None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
**kwargs):
super().__init__(**kwargs)
#layer params
self._filters = filters
self._filter_reduce = filter_reduce
self._activation = activation
def __init__(
self,
filters,
filter_reduce=2,
activation="mish",
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
bias_regularizer=None,
weight_decay=None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
**kwargs):
#convoultion params
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._weight_decay = weight_decay
self._bias_regularizer = bias_regularizer
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
return
super().__init__(**kwargs)
#layer params
self._filters = filters
self._filter_reduce = filter_reduce
self._activation = activation
def build(self, input_shape):
self._conv1 = DarkConv(filters=self._filters,
kernel_size=(3, 3),
strides=(2, 2),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
self._conv2 = DarkConv(filters=self._filters // self._filter_reduce,
kernel_size=(1, 1),
strides=(1, 1),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
#convoultion params
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._weight_decay = weight_decay
self._bias_regularizer = bias_regularizer
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
return
self._conv3 = DarkConv(filters=self._filters // self._filter_reduce,
kernel_size=(1, 1),
strides=(1, 1),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
return
def build(self, input_shape):
self._conv1 = DarkConv(filters=self._filters,
kernel_size=(3, 3),
strides=(2, 2),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
self._conv2 = DarkConv(filters=self._filters // self._filter_reduce,
kernel_size=(1, 1),
strides=(1, 1),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
def call(self, inputs):
x = self._conv1(inputs)
y = self._conv2(x)
x = self._conv3(x)
return (x, y)
self._conv3 = DarkConv(filters=self._filters // self._filter_reduce,
kernel_size=(1, 1),
strides=(1, 1),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
return
def call(self, inputs):
x = self._conv1(inputs)
y = self._conv2(x)
x = self._conv3(x)
return (x, y)
......@@ -3,152 +3,154 @@ import tensorflow as tf
import tensorflow.keras as ks
from ._DarkConv import DarkConv
@ks.utils.register_keras_serializable(package='yolo')
class CSPTiny(ks.layers.Layer):
def __init__(self,
filters=1,
use_bias=True,
kernel_initializer = 'glorot_uniform',
bias_initializer = 'zeros',
bias_regularizer = None,
weight_decay= None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
group_id = 1,
groups = 2,
norm_momentum=0.99,
norm_epsilon=0.001,
activation='leaky',
downsample = True,
leaky_alpha=0.1,
**kwargs):
# darkconv params
self._filters = filters
self._use_bias = use_bias
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._bias_regularizer = bias_regularizer
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._weight_decay=weight_decay
self._groups = groups
self._group_id = group_id
self._downsample = downsample
def __init__(
self,
filters=1,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
bias_regularizer=None,
weight_decay=None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
group_id=1,
groups=2,
norm_momentum=0.99,
norm_epsilon=0.001,
activation='leaky',
downsample=True,
leaky_alpha=0.1,
**kwargs):
# darkconv params
self._filters = filters
self._use_bias = use_bias
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._bias_regularizer = bias_regularizer
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._weight_decay = weight_decay
self._groups = groups
self._group_id = group_id
self._downsample = downsample
# normal params
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
# normal params
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
# activation params
self._conv_activation = activation
self._leaky_alpha = leaky_alpha
# activation params
self._conv_activation = activation
self._leaky_alpha = leaky_alpha
super().__init__(**kwargs)
return
super().__init__(**kwargs)
return
def build(self, input_shape):
self._convlayer1 = DarkConv(filters=self._filters,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
def build(self, input_shape):
self._convlayer1 = DarkConv(filters=self._filters,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer = self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
self._convlayer2 = DarkConv(filters=self._filters // 2,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
self._convlayer2 = DarkConv(filters=self._filters//2,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer = self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
self._convlayer3 = DarkConv(filters=self._filters//2,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer = self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
self._convlayer3 = DarkConv(filters=self._filters // 2,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
self._convlayer4 = DarkConv(filters=self._filters,
kernel_size=(1, 1),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer = self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
self._convlayer4 = DarkConv(filters=self._filters,
kernel_size=(1, 1),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
self._maxpool = tf.keras.layers.MaxPool2D(pool_size=2,
strides=2,
padding="same",
data_format=None)
self._maxpool = tf.keras.layers.MaxPool2D(pool_size=2,
strides=2,
padding="same",
data_format=None)
super().build(input_shape)
return
super().build(input_shape)
return
def call(self, inputs):
x1 = self._convlayer1(inputs)
x2 = tf.split(x1, self._groups, axis = -1)
x3 = self._convlayer2(x2[self._group_id])
x4 = self._convlayer3(x3)
x5 = tf.concat([x4, x3], axis = -1)
x6 = self._convlayer4(x5)
x = tf.concat([x1, x6], axis = - 1)
if self._downsample:
x = self._maxpool(x)
return x, x6
def call(self, inputs):
x1 = self._convlayer1(inputs)
x2 = tf.split(x1, self._groups, axis=-1)
x3 = self._convlayer2(x2[self._group_id])
x4 = self._convlayer3(x3)
x5 = tf.concat([x4, x3], axis=-1)
x6 = self._convlayer4(x5)
x = tf.concat([x1, x6], axis=-1)
if self._downsample:
x = self._maxpool(x)
return x, x6
def get_config(self):
# used to store/share parameters to reconsturct the model
layer_config = {
"filters": self._filters,
"use_bias": self._use_bias,
"strides": self._strides,
"kernel_initializer": self._kernel_initializer,
"bias_initializer": self._bias_initializer,
"weight_decay": self._weight_decay,
"use_bn": self._use_bn,
"use_sync_bn": self._use_sync_bn,
"norm_moment": self._norm_moment,
"norm_epsilon": self._norm_epsilon,
"activation": self._conv_activation,
"leaky_alpha": self._leaky_alpha,
"sc_activation": self._sc_activation,
}
layer_config.update(super().get_config())
return layer_config
def get_config(self):
# used to store/share parameters to reconsturct the model
layer_config = {
"filters": self._filters,
"use_bias": self._use_bias,
"strides": self._strides,
"kernel_initializer": self._kernel_initializer,
"bias_initializer": self._bias_initializer,
"weight_decay": self._weight_decay,
"use_bn": self._use_bn,
"use_sync_bn": self._use_sync_bn,
"norm_moment": self._norm_moment,
"norm_epsilon": self._norm_epsilon,
"activation": self._conv_activation,
"leaky_alpha": self._leaky_alpha,
"sc_activation": self._sc_activation,
}
layer_config.update(super().get_config())
return layer_config
......@@ -11,26 +11,27 @@ from yolo.modeling.functions.mish_activation import mish
@ks.utils.register_keras_serializable(package='yolo')
class DarkConv(ks.layers.Layer):
def __init__(
self,
filters=1,
kernel_size=(1, 1),
strides=(1, 1),
padding='same',
dilation_rate=(1, 1),
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
bias_regularizer=None,
weight_decay=None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
activation='leaky',
leaky_alpha=0.1,
**kwargs):
'''
def __init__(
self,
filters=1,
kernel_size=(1, 1),
strides=(1, 1),
padding='same',
dilation_rate=(1, 1),
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
bias_regularizer=None,
weight_decay=None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
activation='leaky',
leaky_alpha=0.1,
**kwargs):
'''
Modified Convolution layer to match that of the DarkNet Library
Args:
......@@ -56,120 +57,118 @@ class DarkConv(ks.layers.Layer):
'''
# convolution params
self._filters = filters
self._kernel_size = kernel_size
self._strides = strides
self._padding = padding
self._dilation_rate = dilation_rate
self._use_bias = use_bias
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._weight_decay = weight_decay
self._bias_regularizer = bias_regularizer
# batchnorm params
self._use_bn = use_bn
if self._use_bn:
self._use_bias = False
self._use_sync_bn = use_sync_bn
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
if tf.keras.backend.image_data_format() == 'channels_last':
# format: (batch_size, height, width, channels)
self._bn_axis = -1
else:
# format: (batch_size, channels, width, height)
self._bn_axis = 1
# activation params
if activation is None:
self._activation = 'linear'
else:
self._activation = activation
self._leaky_alpha = leaky_alpha
super(DarkConv, self).__init__(**kwargs)
return
def build(self, input_shape):
kernel_size = self._kernel_size if type(
self._kernel_size) == int else self._kernel_size[0]
if self._padding == "same" and kernel_size != 1:
self._zeropad = ks.layers.ZeroPadding2D(
((1, 1), (1, 1))) # symetric padding
else:
self._zeropad = Identity()
self.conv = ks.layers.Conv2D(
filters=self._filters,
kernel_size=self._kernel_size,
strides=self._strides,
padding="valid", #self._padding,
dilation_rate=self._dilation_rate,
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
kernel_regularizer=self._weight_decay,
bias_regularizer=self._bias_regularizer)
#self.conv =tf.nn.convolution(filters=self._filters, strides=self._strides, padding=self._padding
if self._use_bn:
if self._use_sync_bn:
self.bn = tf.keras.layers.experimental.SyncBatchNormalization(
momentum=self._norm_moment,
epsilon=self._norm_epsilon,
axis=self._bn_axis)
else:
self.bn = ks.layers.BatchNormalization(
momentum=self._norm_moment,
epsilon=self._norm_epsilon,
axis=self._bn_axis)
else:
self.bn = Identity()
if self._activation == 'leaky':
alpha = {"alpha": self._leaky_alpha}
self._activation_fn = partial(tf.nn.leaky_relu, **alpha)
elif self._activation == 'mish':
self._activation_fn = mish()
else:
self._activation_fn = ks.layers.Activation(
activation=self._activation)
super(DarkConv, self).build(input_shape)
return
def call(self, inputs):
x = self._zeropad(inputs)
x = self.conv(x)
x = self.bn(x)
x = self._activation_fn(x)
return x
def get_config(self):
# used to store/share parameters to reconsturct the model
layer_config = {
"filters": self._filters,
"kernel_size": self._kernel_size,
"strides": self._strides,
"padding": self._padding,
"dilation_rate": self._dilation_rate,
"use_bias": self._use_bias,
"kernel_initializer": self._kernel_initializer,
"bias_initializer": self._bias_initializer,
"bias_regularizer": self._bias_regularizer,
"l2_regularization": self._l2_regularization,
"use_bn": self._use_bn,
"use_sync_bn": self._use_sync_bn,
"norm_moment": self._norm_moment,
"norm_epsilon": self._norm_epsilon,
"activation": self._activation,
"leaky_alpha": self._leaky_alpha
}
layer_config.update(super(DarkConv, self).get_config())
return layer_config
def __repr__(self):
return repr(self.get_config())
# convolution params
self._filters = filters
self._kernel_size = kernel_size
self._strides = strides
self._padding = padding
self._dilation_rate = dilation_rate
self._use_bias = use_bias
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._weight_decay = weight_decay
self._bias_regularizer = bias_regularizer
# batchnorm params
self._use_bn = use_bn
if self._use_bn:
self._use_bias = False
self._use_sync_bn = use_sync_bn
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
if tf.keras.backend.image_data_format() == 'channels_last':
# format: (batch_size, height, width, channels)
self._bn_axis = -1
else:
# format: (batch_size, channels, width, height)
self._bn_axis = 1
# activation params
if activation is None:
self._activation = 'linear'
else:
self._activation = activation
self._leaky_alpha = leaky_alpha
super(DarkConv, self).__init__(**kwargs)
return
def build(self, input_shape):
kernel_size = self._kernel_size if type(
self._kernel_size) == int else self._kernel_size[0]
if self._padding == "same" and kernel_size != 1:
self._zeropad = ks.layers.ZeroPadding2D(
((1, 1), (1, 1))) # symetric padding
else:
self._zeropad = Identity()
self.conv = ks.layers.Conv2D(
filters=self._filters,
kernel_size=self._kernel_size,
strides=self._strides,
padding="valid", #self._padding,
dilation_rate=self._dilation_rate,
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
kernel_regularizer=self._weight_decay,
bias_regularizer=self._bias_regularizer)
#self.conv =tf.nn.convolution(filters=self._filters, strides=self._strides, padding=self._padding
if self._use_bn:
if self._use_sync_bn:
self.bn = tf.keras.layers.experimental.SyncBatchNormalization(
momentum=self._norm_moment,
epsilon=self._norm_epsilon,
axis=self._bn_axis)
else:
self.bn = ks.layers.BatchNormalization(momentum=self._norm_moment,
epsilon=self._norm_epsilon,
axis=self._bn_axis)
else:
self.bn = Identity()
if self._activation == 'leaky':
alpha = {"alpha": self._leaky_alpha}
self._activation_fn = partial(tf.nn.leaky_relu, **alpha)
elif self._activation == 'mish':
self._activation_fn = mish()
else:
self._activation_fn = ks.layers.Activation(activation=self._activation)
super(DarkConv, self).build(input_shape)
return
def call(self, inputs):
x = self._zeropad(inputs)
x = self.conv(x)
x = self.bn(x)
x = self._activation_fn(x)
return x
def get_config(self):
# used to store/share parameters to reconsturct the model
layer_config = {
"filters": self._filters,
"kernel_size": self._kernel_size,
"strides": self._strides,
"padding": self._padding,
"dilation_rate": self._dilation_rate,
"use_bias": self._use_bias,
"kernel_initializer": self._kernel_initializer,
"bias_initializer": self._bias_initializer,
"bias_regularizer": self._bias_regularizer,
"l2_regularization": self._l2_regularization,
"use_bn": self._use_bn,
"use_sync_bn": self._use_sync_bn,
"norm_moment": self._norm_moment,
"norm_epsilon": self._norm_epsilon,
"activation": self._activation,
"leaky_alpha": self._leaky_alpha
}
layer_config.update(super(DarkConv, self).get_config())
return layer_config
def __repr__(self):
return repr(self.get_config())
......@@ -7,24 +7,25 @@ from ._Identity import Identity
@ks.utils.register_keras_serializable(package='yolo')
class DarkResidual(ks.layers.Layer):
def __init__(self,
filters=1,
filter_scale=2,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
weight_decay= None,
bias_regularizer = None,
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
activation='leaky',
leaky_alpha=0.1,
sc_activation='linear',
downsample=False,
**kwargs):
'''
def __init__(self,
filters=1,
filter_scale=2,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
weight_decay=None,
bias_regularizer=None,
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
activation='leaky',
leaky_alpha=0.1,
sc_activation='linear',
downsample=False,
**kwargs):
'''
DarkNet block with Residual connection for Yolo v3 Backbone
Args:
......@@ -46,113 +47,112 @@ class DarkResidual(ks.layers.Layer):
**kwargs: Keyword Arguments
'''
# downsample
self._downsample = downsample
# downsample
self._downsample = downsample
# darkconv params
self._filters = filters
self._filter_scale = filter_scale
self._use_bias = use_bias
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._bias_regularizer = bias_regularizer
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._weight_decay=weight_decay
# darkconv params
self._filters = filters
self._filter_scale = filter_scale
self._use_bias = use_bias
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._bias_regularizer = bias_regularizer
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._weight_decay = weight_decay
# normal params
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
# normal params
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
# activation params
self._conv_activation = activation
self._leaky_alpha = leaky_alpha
self._sc_activation = sc_activation
# activation params
self._conv_activation = activation
self._leaky_alpha = leaky_alpha
self._sc_activation = sc_activation
super().__init__(**kwargs)
return
super().__init__(**kwargs)
return
def build(self, input_shape):
if self._downsample:
self._dconv = DarkConv(filters=self._filters,
kernel_size=(3, 3),
strides=(2, 2),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
weight_decay=self._weight_decay,
leaky_alpha=self._leaky_alpha)
else:
self._dconv = Identity()
def build(self, input_shape):
if self._downsample:
self._dconv = DarkConv(filters=self._filters,
kernel_size=(3, 3),
strides=(2, 2),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
weight_decay=self._weight_decay,
leaky_alpha=self._leaky_alpha)
else:
self._dconv = Identity()
self._conv1 = DarkConv(filters=self._filters // self._filter_scale,
kernel_size=(1, 1),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
weight_decay=self._weight_decay,
leaky_alpha=self._leaky_alpha)
self._conv2 = DarkConv(filters=self._filters,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
weight_decay=self._weight_decay,
leaky_alpha=self._leaky_alpha)
self._conv1 = DarkConv(filters=self._filters // self._filter_scale,
kernel_size=(1, 1),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
weight_decay=self._weight_decay,
leaky_alpha=self._leaky_alpha)
self._conv2 = DarkConv(filters=self._filters,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
weight_decay=self._weight_decay,
leaky_alpha=self._leaky_alpha)
self._shortcut = ks.layers.Add()
self._activation_fn = ks.layers.Activation(
activation=self._sc_activation)
self._shortcut = ks.layers.Add()
self._activation_fn = ks.layers.Activation(activation=self._sc_activation)
super().build(input_shape)
return
super().build(input_shape)
return
def call(self, inputs):
shortcut = self._dconv(inputs)
x = self._conv1(shortcut)
x = self._conv2(x)
x = self._shortcut([x, shortcut])
return self._activation_fn(x)
def call(self, inputs):
shortcut = self._dconv(inputs)
x = self._conv1(shortcut)
x = self._conv2(x)
x = self._shortcut([x, shortcut])
return self._activation_fn(x)
def get_config(self):
# used to store/share parameters to reconsturct the model
layer_config = {
"filters": self._filters,
"use_bias": self._use_bias,
"kernel_initializer": self._kernel_initializer,
"bias_initializer": self._bias_initializer,
"weight_decay": self._weight_decay,
"use_bn": self._use_bn,
"use_sync_bn": self._use_sync_bn,
"norm_moment": self._norm_moment,
"norm_epsilon": self._norm_epsilon,
"activation": self._conv_activation,
"leaky_alpha": self._leaky_alpha,
"sc_activation": self._sc_activation,
"downsample": self._downsample
}
layer_config.update(super().get_config())
return layer_config
def get_config(self):
# used to store/share parameters to reconsturct the model
layer_config = {
"filters": self._filters,
"use_bias": self._use_bias,
"kernel_initializer": self._kernel_initializer,
"bias_initializer": self._bias_initializer,
"weight_decay": self._weight_decay,
"use_bn": self._use_bn,
"use_sync_bn": self._use_sync_bn,
"norm_moment": self._norm_moment,
"norm_epsilon": self._norm_epsilon,
"activation": self._conv_activation,
"leaky_alpha": self._leaky_alpha,
"sc_activation": self._sc_activation,
"downsample": self._downsample
}
layer_config.update(super().get_config())
return layer_config
......@@ -6,98 +6,100 @@ from ._DarkConv import DarkConv
@ks.utils.register_keras_serializable(package='yolo')
class DarkTiny(ks.layers.Layer):
def __init__(self,
filters=1,
use_bias=True,
strides=2,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
bias_regularizer = None,
weight_decay= None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
activation='leaky',
leaky_alpha=0.1,
sc_activation='linear',
**kwargs):
# darkconv params
self._filters = filters
self._use_bias = use_bias
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._bias_regularizer=bias_regularizer
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._strides = strides
self._weight_decay=weight_decay
def __init__(
self,
filters=1,
use_bias=True,
strides=2,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
bias_regularizer=None,
weight_decay=None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
activation='leaky',
leaky_alpha=0.1,
sc_activation='linear',
**kwargs):
# normal params
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
# darkconv params
self._filters = filters
self._use_bias = use_bias
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._bias_regularizer = bias_regularizer
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._strides = strides
self._weight_decay = weight_decay
# activation params
self._conv_activation = activation
self._leaky_alpha = leaky_alpha
self._sc_activation = sc_activation
# normal params
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
super().__init__(**kwargs)
return
# activation params
self._conv_activation = activation
self._leaky_alpha = leaky_alpha
self._sc_activation = sc_activation
def build(self, input_shape):
# if self._strides == 2:
# self._zeropad = ks.layers.ZeroPadding2D(((1,0), (1,0)))
# padding = "valid"
# else:
# self._zeropad = ks.layers.ZeroPadding2D(((0,1), (0,1)))#nn_blocks.Identity()#ks.layers.ZeroPadding2D(((1,0), (1,0)))
# padding = "valid"
self._maxpool = tf.keras.layers.MaxPool2D(pool_size=2,
strides=self._strides,
padding="same",
data_format=None)
super().__init__(**kwargs)
return
self._convlayer = DarkConv(filters=self._filters,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
def build(self, input_shape):
# if self._strides == 2:
# self._zeropad = ks.layers.ZeroPadding2D(((1,0), (1,0)))
# padding = "valid"
# else:
# self._zeropad = ks.layers.ZeroPadding2D(((0,1), (0,1)))#nn_blocks.Identity()#ks.layers.ZeroPadding2D(((1,0), (1,0)))
# padding = "valid"
self._maxpool = tf.keras.layers.MaxPool2D(pool_size=2,
strides=self._strides,
padding="same",
data_format=None)
super().build(input_shape)
return
self._convlayer = DarkConv(filters=self._filters,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
def call(self, inputs):
output = self._maxpool(inputs)
output = self._convlayer(output)
return output
super().build(input_shape)
return
def get_config(self):
# used to store/share parameters to reconsturct the model
layer_config = {
"filters": self._filters,
"use_bias": self._use_bias,
"strides": self._strides,
"kernel_initializer": self._kernel_initializer,
"bias_initializer": self._bias_initializer,
"l2_regularization": self._l2_regularization,
"use_bn": self._use_bn,
"use_sync_bn": self._use_sync_bn,
"norm_moment": self._norm_moment,
"norm_epsilon": self._norm_epsilon,
"activation": self._conv_activation,
"leaky_alpha": self._leaky_alpha,
"sc_activation": self._sc_activation,
}
layer_config.update(super().get_config())
return layer_config
def call(self, inputs):
output = self._maxpool(inputs)
output = self._convlayer(output)
return output
def get_config(self):
# used to store/share parameters to reconsturct the model
layer_config = {
"filters": self._filters,
"use_bias": self._use_bias,
"strides": self._strides,
"kernel_initializer": self._kernel_initializer,
"bias_initializer": self._bias_initializer,
"l2_regularization": self._l2_regularization,
"use_bn": self._use_bn,
"use_sync_bn": self._use_sync_bn,
"norm_moment": self._norm_moment,
"norm_epsilon": self._norm_epsilon,
"activation": self._conv_activation,
"leaky_alpha": self._leaky_alpha,
"sc_activation": self._sc_activation,
}
layer_config.update(super().get_config())
return layer_config
......@@ -4,4 +4,3 @@ from ._DarkTiny import DarkTiny
from ._CSPConnect import CSPConnect
from ._CSPDownSample import CSPDownSample
from ._CSPTiny import CSPTiny
......@@ -8,48 +8,49 @@ from official.vision.beta.projects.yolo.modeling.building_blocks import CSPConne
class CSPConnect(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(("same", 224, 224, 64, 1),
("downsample", 224, 224, 64, 2))
def test_pass_through(self, width, height, filters, mod):
x = ks.Input(shape=(width, height, filters))
test_layer = layer(filters=filters, filter_reduce=mod)
test_layer2 = layer_companion(filters=filters, filter_reduce=mod)
outx, px = test_layer(x)
outx = test_layer2([outx, px])
print(outx)
print(outx.shape.as_list())
self.assertAllEqual(
outx.shape.as_list(),
[None, np.ceil(width // 2),
np.ceil(height // 2), (filters)])
return
@parameterized.named_parameters(("same", 224, 224, 64, 1),
("downsample", 224, 224, 128, 2))
def test_gradient_pass_though(self, filters, width, height, mod):
loss = ks.losses.MeanSquaredError()
optimizer = ks.optimizers.SGD()
test_layer = layer(filters, filter_reduce=mod)
path_layer = layer_companion(filters, filter_reduce=mod)
init = tf.random_normal_initializer()
x = tf.Variable(initial_value=init(shape=(1, width, height, filters),
dtype=tf.float32))
y = tf.Variable(initial_value=init(shape=(1, int(np.ceil(width // 2)),
int(np.ceil(height // 2)),
filters),
dtype=tf.float32))
with tf.GradientTape() as tape:
x_hat, x_prev = test_layer(x)
x_hat = path_layer([x_hat, x_prev])
grad_loss = loss(x_hat, y)
grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad)
return
@parameterized.named_parameters(("same", 224, 224, 64, 1),
("downsample", 224, 224, 64, 2))
def test_pass_through(self, width, height, filters, mod):
x = ks.Input(shape=(width, height, filters))
test_layer = layer(filters=filters, filter_reduce=mod)
test_layer2 = layer_companion(filters=filters, filter_reduce=mod)
outx, px = test_layer(x)
outx = test_layer2([outx, px])
print(outx)
print(outx.shape.as_list())
self.assertAllEqual(
outx.shape.as_list(),
[None, np.ceil(width // 2),
np.ceil(height // 2), (filters)])
return
@parameterized.named_parameters(("same", 224, 224, 64, 1),
("downsample", 224, 224, 128, 2))
def test_gradient_pass_though(self, filters, width, height, mod):
loss = ks.losses.MeanSquaredError()
optimizer = ks.optimizers.SGD()
test_layer = layer(filters, filter_reduce=mod)
path_layer = layer_companion(filters, filter_reduce=mod)
init = tf.random_normal_initializer()
x = tf.Variable(
initial_value=init(shape=(1, width, height, filters), dtype=tf.float32))
y = tf.Variable(initial_value=init(shape=(1, int(np.ceil(width // 2)),
int(np.ceil(height // 2)),
filters),
dtype=tf.float32))
with tf.GradientTape() as tape:
x_hat, x_prev = test_layer(x)
x_hat = path_layer([x_hat, x_prev])
grad_loss = loss(x_hat, y)
grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad)
return
if __name__ == "__main__":
tf.test.main()
tf.test.main()
......@@ -6,48 +6,49 @@ from absl.testing import parameterized
from official.vision.beta.projects.yolo.modeling.building_blocks import CSPDownSample as layer
from official.vision.beta.projects.yolo.modeling.building_blocks import CSPConnect as layer_companion
class CSPDownSample(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(("same", 224, 224, 64, 1),
("downsample", 224, 224, 64, 2))
def test_pass_through(self, width, height, filters, mod):
x = ks.Input(shape=(width, height, filters))
test_layer = layer(filters=filters, filter_reduce=mod)
outx, px = test_layer(x)
print(outx)
print(outx.shape.as_list())
self.assertAllEqual(
outx.shape.as_list(),
[None,
np.ceil(width // 2),
np.ceil(height // 2), (filters / mod)])
return
@parameterized.named_parameters(("same", 224, 224, 64, 1),
("downsample", 224, 224, 128, 2))
def test_gradient_pass_though(self, filters, width, height, mod):
loss = ks.losses.MeanSquaredError()
optimizer = ks.optimizers.SGD()
test_layer = layer(filters, filter_reduce=mod)
path_layer = layer_companion(filters, filter_reduce=mod)
init = tf.random_normal_initializer()
x = tf.Variable(initial_value=init(shape=(1, width, height, filters),
dtype=tf.float32))
y = tf.Variable(initial_value=init(shape=(1, int(np.ceil(width // 2)),
int(np.ceil(height // 2)),
filters),
dtype=tf.float32))
with tf.GradientTape() as tape:
x_hat, x_prev = test_layer(x)
x_hat = path_layer([x_hat, x_prev])
grad_loss = loss(x_hat, y)
grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad)
return
@parameterized.named_parameters(("same", 224, 224, 64, 1),
("downsample", 224, 224, 64, 2))
def test_pass_through(self, width, height, filters, mod):
x = ks.Input(shape=(width, height, filters))
test_layer = layer(filters=filters, filter_reduce=mod)
outx, px = test_layer(x)
print(outx)
print(outx.shape.as_list())
self.assertAllEqual(
outx.shape.as_list(),
[None, np.ceil(width // 2),
np.ceil(height // 2), (filters / mod)])
return
@parameterized.named_parameters(("same", 224, 224, 64, 1),
("downsample", 224, 224, 128, 2))
def test_gradient_pass_though(self, filters, width, height, mod):
loss = ks.losses.MeanSquaredError()
optimizer = ks.optimizers.SGD()
test_layer = layer(filters, filter_reduce=mod)
path_layer = layer_companion(filters, filter_reduce=mod)
init = tf.random_normal_initializer()
x = tf.Variable(
initial_value=init(shape=(1, width, height, filters), dtype=tf.float32))
y = tf.Variable(initial_value=init(shape=(1, int(np.ceil(width // 2)),
int(np.ceil(height // 2)),
filters),
dtype=tf.float32))
with tf.GradientTape() as tape:
x_hat, x_prev = test_layer(x)
x_hat = path_layer([x_hat, x_prev])
grad_loss = loss(x_hat, y)
grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad)
return
if __name__ == "__main__":
tf.test.main()
tf.test.main()
......@@ -5,67 +5,68 @@ from absl.testing import parameterized
from official.vision.beta.projects.yolo.modeling.building_blocks import DarkConv
class DarkConvTest(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(("valid", (3, 3), "valid", (1, 1)),
("same", (3, 3), "same", (1, 1)),
("downsample", (3, 3), "same", (2, 2)),
("test", (1, 1), "valid", (1, 1)))
def test_pass_through(self, kernel_size, padding, strides):
if padding == "same":
pad_const = 1
else:
pad_const = 0
x = ks.Input(shape=(224, 224, 3))
test_layer = DarkConv(filters=64,
kernel_size=kernel_size,
padding=padding,
strides=strides,
trainable=False)
outx = test_layer(x)
print(outx.shape.as_list())
test = [
None,
int((224 - kernel_size[0] + (2 * pad_const)) / strides[0] + 1),
int((224 - kernel_size[1] + (2 * pad_const)) / strides[1] + 1), 64
]
print(test)
self.assertAllEqual(outx.shape.as_list(), test)
return
@parameterized.named_parameters(("filters", 3))
def test_gradient_pass_though(self, filters):
loss = ks.losses.MeanSquaredError()
optimizer = ks.optimizers.SGD()
with tf.device("/CPU:0"):
test_layer = DarkConv(filters, kernel_size=(3, 3), padding="same")
@parameterized.named_parameters(
("valid", (3, 3), "valid", (1, 1)), ("same", (3, 3), "same", (1, 1)),
("downsample", (3, 3), "same", (2, 2)), ("test", (1, 1), "valid", (1, 1)))
def test_pass_through(self, kernel_size, padding, strides):
if padding == "same":
pad_const = 1
else:
pad_const = 0
x = ks.Input(shape=(224, 224, 3))
test_layer = DarkConv(filters=64,
kernel_size=kernel_size,
padding=padding,
strides=strides,
trainable=False)
outx = test_layer(x)
print(outx.shape.as_list())
test = [
None,
int((224 - kernel_size[0] + (2 * pad_const)) / strides[0] + 1),
int((224 - kernel_size[1] + (2 * pad_const)) / strides[1] + 1), 64
]
print(test)
self.assertAllEqual(outx.shape.as_list(), test)
return
@parameterized.named_parameters(("filters", 3))
def test_gradient_pass_though(self, filters):
loss = ks.losses.MeanSquaredError()
optimizer = ks.optimizers.SGD()
with tf.device("/CPU:0"):
test_layer = DarkConv(filters, kernel_size=(3, 3), padding="same")
init = tf.random_normal_initializer()
x = tf.Variable(
initial_value=init(shape=(1, 224, 224, 3), dtype=tf.float32))
y = tf.Variable(
initial_value=init(shape=(1, 224, 224, filters), dtype=tf.float32))
init = tf.random_normal_initializer()
x = tf.Variable(initial_value=init(shape=(1, 224, 224,
3), dtype=tf.float32))
y = tf.Variable(
initial_value=init(shape=(1, 224, 224, filters), dtype=tf.float32))
with tf.GradientTape() as tape:
x_hat = test_layer(x)
grad_loss = loss(x_hat, y)
grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad)
return
with tf.GradientTape() as tape:
x_hat = test_layer(x)
grad_loss = loss(x_hat, y)
grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad)
return
# @parameterized.named_parameters(("filters", 3), ("filters", 20), ("filters", 512))
# def test_time(self, filters):
# # finish the test for time
# dataset = tfds.load("mnist")
# model = ks.Sequential([
# DarkConv(7, kernel_size=(3,3), strides = (2,2), activation='relu'),
# DarkConv(10, kernel_size=(3,3), strides = (2,2), activation='relu'),
# DarkConv(filters, kernel_size=(3,3), strides = (1,1), activation='relu'),
# DarkConv(9, kernel_size=(3,3), strides = (2,2), activation='relu'),
# ks.layers.GlobalAveragePooling2D(),
# ks.layers.Dense(10, activation='softmax')], name='test')
# return
# @parameterized.named_parameters(("filters", 3), ("filters", 20), ("filters", 512))
# def test_time(self, filters):
# # finish the test for time
# dataset = tfds.load("mnist")
# model = ks.Sequential([
# DarkConv(7, kernel_size=(3,3), strides = (2,2), activation='relu'),
# DarkConv(10, kernel_size=(3,3), strides = (2,2), activation='relu'),
# DarkConv(filters, kernel_size=(3,3), strides = (1,1), activation='relu'),
# DarkConv(9, kernel_size=(3,3), strides = (2,2), activation='relu'),
# ks.layers.GlobalAveragePooling2D(),
# ks.layers.Dense(10, activation='softmax')], name='test')
# return
if __name__ == "__main__":
tf.test.main()
tf.test.main()
......@@ -7,54 +7,55 @@ from official.vision.beta.projects.yolo.modeling.building_blocks import DarkResi
class DarkResidualTest(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(("same", 224, 224, 64, False),
("downsample", 223, 223, 32, True),
("oddball", 223, 223, 32, False))
def test_pass_through(self, width, height, filters, downsample):
mod = 1
if downsample:
mod = 2
x = ks.Input(shape=(width, height, filters))
test_layer = layer(filters=filters, downsample=downsample)
outx = test_layer(x)
print(outx)
print(outx.shape.as_list())
self.assertAllEqual(
outx.shape.as_list(),
[None, np.ceil(width / mod),
np.ceil(height / mod), filters])
return
@parameterized.named_parameters(("same", 64, 224, 224, False),
("downsample", 32, 223, 223, True),
("oddball", 32, 223, 223, False))
def test_gradient_pass_though(self, filters, width, height, downsample):
loss = ks.losses.MeanSquaredError()
optimizer = ks.optimizers.SGD()
test_layer = layer(filters, downsample=downsample)
if downsample:
mod = 2
else:
mod = 1
init = tf.random_normal_initializer()
x = tf.Variable(initial_value=init(shape=(1, width, height, filters),
dtype=tf.float32))
y = tf.Variable(initial_value=init(shape=(1, int(np.ceil(width / mod)),
int(np.ceil(height / mod)),
filters),
dtype=tf.float32))
with tf.GradientTape() as tape:
x_hat = test_layer(x)
grad_loss = loss(x_hat, y)
grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad)
return
@parameterized.named_parameters(("same", 224, 224, 64, False),
("downsample", 223, 223, 32, True),
("oddball", 223, 223, 32, False))
def test_pass_through(self, width, height, filters, downsample):
mod = 1
if downsample:
mod = 2
x = ks.Input(shape=(width, height, filters))
test_layer = layer(filters=filters, downsample=downsample)
outx = test_layer(x)
print(outx)
print(outx.shape.as_list())
self.assertAllEqual(
outx.shape.as_list(),
[None, np.ceil(width / mod),
np.ceil(height / mod), filters])
return
@parameterized.named_parameters(("same", 64, 224, 224, False),
("downsample", 32, 223, 223, True),
("oddball", 32, 223, 223, False))
def test_gradient_pass_though(self, filters, width, height, downsample):
loss = ks.losses.MeanSquaredError()
optimizer = ks.optimizers.SGD()
test_layer = layer(filters, downsample=downsample)
if downsample:
mod = 2
else:
mod = 1
init = tf.random_normal_initializer()
x = tf.Variable(
initial_value=init(shape=(1, width, height, filters), dtype=tf.float32))
y = tf.Variable(initial_value=init(shape=(1, int(np.ceil(width / mod)),
int(np.ceil(height / mod)),
filters),
dtype=tf.float32))
with tf.GradientTape() as tape:
x_hat = test_layer(x)
grad_loss = loss(x_hat, y)
grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad)
return
if __name__ == "__main__":
tf.test.main()
tf.test.main()
......@@ -7,44 +7,44 @@ from official.vision.beta.projects.yolo.modeling.building_blocks import DarkTiny
class DarkTinyTest(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(("middle", 224, 224, 64, 2),
("last", 224, 224, 1024, 1))
def test_pass_through(self, width, height, filters, strides):
x = ks.Input(shape=(width, height, filters))
test_layer = DarkTiny(filters=filters, strides=strides)
outx = test_layer(x)
print(outx)
print(outx.shape.as_list())
self.assertEqual(width % strides, 0, msg="width % strides != 0")
self.assertEqual(height % strides, 0, msg="height % strides != 0")
self.assertAllEqual(
outx.shape.as_list(),
[None, width // strides, height // strides, filters])
return
@parameterized.named_parameters(("middle", 224, 224, 64, 2),
("last", 224, 224, 1024, 1))
def test_gradient_pass_though(self, width, height, filters, strides):
loss = ks.losses.MeanSquaredError()
optimizer = ks.optimizers.SGD()
test_layer = DarkTiny(filters=filters, strides=strides)
init = tf.random_normal_initializer()
x = tf.Variable(initial_value=init(shape=(1, width, height, filters),
dtype=tf.float32))
y = tf.Variable(initial_value=init(shape=(1, width // strides,
height // strides, filters),
dtype=tf.float32))
with tf.GradientTape() as tape:
x_hat = test_layer(x)
grad_loss = loss(x_hat, y)
grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad)
return
@parameterized.named_parameters(("middle", 224, 224, 64, 2),
("last", 224, 224, 1024, 1))
def test_pass_through(self, width, height, filters, strides):
x = ks.Input(shape=(width, height, filters))
test_layer = DarkTiny(filters=filters, strides=strides)
outx = test_layer(x)
print(outx)
print(outx.shape.as_list())
self.assertEqual(width % strides, 0, msg="width % strides != 0")
self.assertEqual(height % strides, 0, msg="height % strides != 0")
self.assertAllEqual(outx.shape.as_list(),
[None, width // strides, height // strides, filters])
return
@parameterized.named_parameters(("middle", 224, 224, 64, 2),
("last", 224, 224, 1024, 1))
def test_gradient_pass_though(self, width, height, filters, strides):
loss = ks.losses.MeanSquaredError()
optimizer = ks.optimizers.SGD()
test_layer = DarkTiny(filters=filters, strides=strides)
init = tf.random_normal_initializer()
x = tf.Variable(
initial_value=init(shape=(1, width, height, filters), dtype=tf.float32))
y = tf.Variable(initial_value=init(shape=(1, width // strides,
height // strides, filters),
dtype=tf.float32))
with tf.GradientTape() as tape:
x_hat = test_layer(x)
grad_loss = loss(x_hat, y)
grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad)
return
if __name__ == "__main__":
tf.test.main()
tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment