Commit bdaa525b authored by Hongkun Yu's avatar Hongkun Yu Committed by A. Unique TensorFlower
Browse files

Fix typo.

PiperOrigin-RevId: 322960082
parent 58a0c81c
...@@ -34,7 +34,7 @@ class MaskedLM(tf.keras.layers.Layer): ...@@ -34,7 +34,7 @@ class MaskedLM(tf.keras.layers.Layer):
Arguments: Arguments:
embedding_table: The embedding table of the targets. embedding_table: The embedding table of the targets.
activation: The activation, if any, for the dense layer. activation: The activation, if any, for the dense layer.
initializer: The intializer for the dense layer. Defaults to a Glorot initializer: The initializer for the dense layer. Defaults to a Glorot
uniform initializer. uniform initializer.
output: The output style for this network. Can be either 'logits' or output: The output style for this network. Can be either 'logits' or
'predictions'. 'predictions'.
......
...@@ -37,8 +37,8 @@ class Classification(tf.keras.Model): ...@@ -37,8 +37,8 @@ class Classification(tf.keras.Model):
num_classes: The number of classes that this network should classify to. If num_classes: The number of classes that this network should classify to. If
equal to 1, a regression problem is assumed. equal to 1, a regression problem is assumed.
activation: The activation, if any, for the dense layer in this network. activation: The activation, if any, for the dense layer in this network.
initializer: The intializer for the dense layer in this network. Defaults to initializer: The initializer for the dense layer in this network. Defaults
a Glorot uniform initializer. to a Glorot uniform initializer.
output: The output style for this network. Can be either 'logits' or output: The output style for this network. Can be either 'logits' or
'predictions'. 'predictions'.
""" """
......
...@@ -33,8 +33,8 @@ class SpanLabeling(tf.keras.Model): ...@@ -33,8 +33,8 @@ class SpanLabeling(tf.keras.Model):
Arguments: Arguments:
input_width: The innermost dimension of the input tensor to this network. input_width: The innermost dimension of the input tensor to this network.
activation: The activation, if any, for the dense layer in this network. activation: The activation, if any, for the dense layer in this network.
initializer: The intializer for the dense layer in this network. Defaults to initializer: The initializer for the dense layer in this network. Defaults
a Glorot uniform initializer. to a Glorot uniform initializer.
output: The output style for this network. Can be either 'logits' or output: The output style for this network. Can be either 'logits' or
'predictions'. 'predictions'.
""" """
......
...@@ -34,8 +34,8 @@ class TokenClassification(tf.keras.Model): ...@@ -34,8 +34,8 @@ class TokenClassification(tf.keras.Model):
input_width: The innermost dimension of the input tensor to this network. input_width: The innermost dimension of the input tensor to this network.
num_classes: The number of classes that this network should classify to. num_classes: The number of classes that this network should classify to.
activation: The activation, if any, for the dense layer in this network. activation: The activation, if any, for the dense layer in this network.
initializer: The intializer for the dense layer in this network. Defaults to initializer: The initializer for the dense layer in this network. Defaults
a Glorot uniform initializer. to a Glorot uniform initializer.
output: The output style for this network. Can be either 'logits' or output: The output style for this network. Can be either 'logits' or
'predictions'. 'predictions'.
""" """
......
...@@ -55,7 +55,7 @@ def rel_shift(x, klen=-1): ...@@ -55,7 +55,7 @@ def rel_shift(x, klen=-1):
def _get_initializer(flags): def _get_initializer(flags):
"""Get variable intializer.""" """Get variable initializer."""
if flags.init_method == 'uniform': if flags.init_method == 'uniform':
initializer = tf.keras.initializers.RandomUniform( initializer = tf.keras.initializers.RandomUniform(
minval=-flags.init_range, maxval=flags.init_range) minval=-flags.init_range, maxval=flags.init_range)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment