Commit 90cec348 authored by Hui Hui's avatar Hui Hui
Browse files

Open-source Xception-65 pretrained on COCO.

Open-sourcing the checkpoint so that users could reproduce our PASCAL VOC 2012 validation set result when training on train_aug set.
parent 83490227
......@@ -126,10 +126,18 @@ with "deeplab".
## Change Logs
### October 1, 2018
Released MobileNet-v2 depth-multiplier = 0.5 COCO-pretrained checkpoints on
PASCAL VOC 2012, and Xception-65 COCO pretrained checkpoint (i.e., no PASCAL
pretrained).
### September 5, 2018
Released Cityscapes pretrained checkpoints with found best dense prediction cell.
### May 26, 2018
Updated ADE20K pretrained checkpoint.
......
......@@ -100,8 +100,9 @@ Un-tar'ed directory includes:
### Model details
We also provide some checkpoints that are only pretrained on ImageNet so that
one could use this for training your own models.
We also provide some checkpoints that are pretrained on ImageNet and/or COCO (as
post-fixed in the model name) so that one could use this for training your own
models.
* mobilenet_v2: We refer the interested users to the TensorFlow open source
[MobileNet-V2](https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet)
......@@ -120,11 +121,12 @@ one could use this for training your own models.
Model name | File Size
-------------------------------------------------------------------------------------- | :-------:
[xception_41](http://download.tensorflow.org/models/xception_41_2018_05_09.tar.gz ) | 288MB
[xception_65](http://download.tensorflow.org/models/deeplabv3_xception_2018_01_04.tar.gz) | 447MB
[xception_71](http://download.tensorflow.org/models/xception_71_2018_05_09.tar.gz ) | 474MB
[resnet_v1_50_beta](http://download.tensorflow.org/models/resnet_v1_50_2018_05_04.tar.gz) | 274MB
[resnet_v1_101_beta](http://download.tensorflow.org/models/resnet_v1_101_2018_05_04.tar.gz) | 477MB
[xception_41_imagenet](http://download.tensorflow.org/models/xception_41_2018_05_09.tar.gz ) | 288MB
[xception_65_imagenet](http://download.tensorflow.org/models/deeplabv3_xception_2018_01_04.tar.gz) | 447MB
[xception_65_imagenet_coco](http://download.tensorflow.org/models/xception_65_coco_pretrained_2018_10_02.tar.gz) | 292MB
[xception_71_imagenet](http://download.tensorflow.org/models/xception_71_2018_05_09.tar.gz ) | 474MB
[resnet_v1_50_beta_imagenet](http://download.tensorflow.org/models/resnet_v1_50_2018_05_04.tar.gz) | 274MB
[resnet_v1_101_beta_imagenet](http://download.tensorflow.org/models/resnet_v1_101_2018_05_04.tar.gz) | 477MB
## References
......
......@@ -382,7 +382,7 @@ def extract_features(images,
else:
# The following codes employ the DeepLabv3 ASPP module. Note that We
# could express the ASPP module as one particular dense prediction
# cell architecture. We do not do so but leave the followng codes in
# cell architecture. We do not do so but leave the following codes in
# order for backward compatibility.
batch_norm_params = {
'is_training': is_training and fine_tune_batch_norm,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment