"...csrc/git@developer.sourcefind.cn:OpenDAS/vision.git" did not exist on "2060576e9b02f9399dd18084280fdc59e5acee93"
Commit 871df79f authored by TF Object Detection Team's avatar TF Object Detection Team
Browse files

Merge pull request #8943 from kmindspark:detr-push-2

PiperOrigin-RevId: 324623313
parents c07b073e e6abe821
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Hungarian bipartite matcher implementation."""
import numpy as np
from scipy.optimize import linear_sum_assignment
import tensorflow.compat.v1 as tf
from object_detection.core import matcher
class HungarianBipartiteMatcher(matcher.Matcher):
"""Wraps a Hungarian bipartite matcher into TensorFlow."""
def _match(self, similarity_matrix, valid_rows):
"""Optimally bipartite matches a collection rows and columns.
Args:
similarity_matrix: Float tensor of shape [N, M] with pairwise similarity
where higher values mean more similar.
valid_rows: A boolean tensor of shape [N] indicating the rows that are
valid.
Returns:
match_results: int32 tensor of shape [M] with match_results[i]=-1
meaning that column i is not matched and otherwise that it is matched to
row match_results[i].
"""
valid_row_sim_matrix = tf.gather(similarity_matrix,
tf.squeeze(tf.where(valid_rows), axis=-1))
distance_matrix = -1 * valid_row_sim_matrix
def numpy_wrapper(inputs):
def numpy_matching(input_matrix):
row_indices, col_indices = linear_sum_assignment(input_matrix)
match_results = np.full(input_matrix.shape[1], -1)
match_results[col_indices] = row_indices
return match_results.astype(np.int32)
return tf.numpy_function(numpy_matching, inputs, Tout=[tf.int32])
matching_result = tf.autograph.experimental.do_not_convert(
numpy_wrapper)([distance_matrix])
return tf.reshape(matching_result, [-1])
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.core.bipartite_matcher."""
import unittest
import numpy as np
import tensorflow.compat.v1 as tf
from object_detection.utils import test_case
from object_detection.utils import tf_version
if tf_version.is_tf2():
from object_detection.matchers import hungarian_matcher # pylint: disable=g-import-not-at-top
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class HungarianBipartiteMatcherTest(test_case.TestCase):
def test_get_expected_matches_when_all_rows_are_valid(self):
similarity_matrix = np.array([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]],
dtype=np.float32)
valid_rows = np.ones([2], dtype=np.bool)
expected_match_results = [-1, 1, 0]
matcher = hungarian_matcher.HungarianBipartiteMatcher()
match_results_out = matcher.match(similarity_matrix, valid_rows=valid_rows)
self.assertAllEqual(match_results_out._match_results.numpy(),
expected_match_results)
def test_get_expected_matches_with_all_rows_be_default(self):
similarity_matrix = np.array([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]],
dtype=np.float32)
expected_match_results = [-1, 1, 0]
matcher = hungarian_matcher.HungarianBipartiteMatcher()
match_results_out = matcher.match(similarity_matrix)
self.assertAllEqual(match_results_out._match_results.numpy(),
expected_match_results)
def test_get_no_matches_with_zero_valid_rows(self):
similarity_matrix = np.array([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]],
dtype=np.float32)
valid_rows = np.zeros([2], dtype=np.bool)
expected_match_results = [-1, -1, -1]
matcher = hungarian_matcher.HungarianBipartiteMatcher()
match_results_out = matcher.match(similarity_matrix, valid_rows=valid_rows)
self.assertAllEqual(match_results_out._match_results.numpy(),
expected_match_results)
def test_get_expected_matches_with_only_one_valid_row(self):
similarity_matrix = np.array([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]],
dtype=np.float32)
valid_rows = np.array([True, False], dtype=np.bool)
expected_match_results = [-1, -1, 0]
matcher = hungarian_matcher.HungarianBipartiteMatcher()
match_results_out = matcher.match(similarity_matrix, valid_rows=valid_rows)
self.assertAllEqual(match_results_out._match_results.numpy(),
expected_match_results)
def test_get_expected_matches_with_only_one_valid_row_at_bottom(self):
similarity_matrix = np.array([[0.15, 0.2, 0.3], [0.50, 0.1, 0.8]],
dtype=np.float32)
valid_rows = np.array([False, True], dtype=np.bool)
expected_match_results = [-1, -1, 0]
matcher = hungarian_matcher.HungarianBipartiteMatcher()
match_results_out = matcher.match(similarity_matrix, valid_rows=valid_rows)
self.assertAllEqual(match_results_out._match_results.numpy(),
expected_match_results)
def test_get_expected_matches_with_two_valid_rows(self):
similarity_matrix = np.array([[0.15, 0.2, 0.3], [0.50, 0.1, 0.8],
[0.84, 0.32, 0.2]],
dtype=np.float32)
valid_rows = np.array([True, False, True], dtype=np.bool)
expected_match_results = [1, -1, 0]
matcher = hungarian_matcher.HungarianBipartiteMatcher()
match_results_out = matcher.match(similarity_matrix, valid_rows=valid_rows)
self.assertAllEqual(match_results_out._match_results.numpy(),
expected_match_results)
if __name__ == '__main__':
tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment