Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
871df79f
Commit
871df79f
authored
Aug 03, 2020
by
TF Object Detection Team
Browse files
Merge pull request #8943 from kmindspark:detr-push-2
PiperOrigin-RevId: 324623313
parents
c07b073e
e6abe821
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
163 additions
and
0 deletions
+163
-0
research/object_detection/matchers/hungarian_matcher.py
research/object_detection/matchers/hungarian_matcher.py
+58
-0
research/object_detection/matchers/hungarian_matcher_tf2_test.py
...h/object_detection/matchers/hungarian_matcher_tf2_test.py
+105
-0
No files found.
research/object_detection/matchers/hungarian_matcher.py
0 → 100644
View file @
871df79f
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Hungarian bipartite matcher implementation."""
import
numpy
as
np
from
scipy.optimize
import
linear_sum_assignment
import
tensorflow.compat.v1
as
tf
from
object_detection.core
import
matcher
class
HungarianBipartiteMatcher
(
matcher
.
Matcher
):
"""Wraps a Hungarian bipartite matcher into TensorFlow."""
def
_match
(
self
,
similarity_matrix
,
valid_rows
):
"""Optimally bipartite matches a collection rows and columns.
Args:
similarity_matrix: Float tensor of shape [N, M] with pairwise similarity
where higher values mean more similar.
valid_rows: A boolean tensor of shape [N] indicating the rows that are
valid.
Returns:
match_results: int32 tensor of shape [M] with match_results[i]=-1
meaning that column i is not matched and otherwise that it is matched to
row match_results[i].
"""
valid_row_sim_matrix
=
tf
.
gather
(
similarity_matrix
,
tf
.
squeeze
(
tf
.
where
(
valid_rows
),
axis
=-
1
))
distance_matrix
=
-
1
*
valid_row_sim_matrix
def
numpy_wrapper
(
inputs
):
def
numpy_matching
(
input_matrix
):
row_indices
,
col_indices
=
linear_sum_assignment
(
input_matrix
)
match_results
=
np
.
full
(
input_matrix
.
shape
[
1
],
-
1
)
match_results
[
col_indices
]
=
row_indices
return
match_results
.
astype
(
np
.
int32
)
return
tf
.
numpy_function
(
numpy_matching
,
inputs
,
Tout
=
[
tf
.
int32
])
matching_result
=
tf
.
autograph
.
experimental
.
do_not_convert
(
numpy_wrapper
)([
distance_matrix
])
return
tf
.
reshape
(
matching_result
,
[
-
1
])
research/object_detection/matchers/hungarian_matcher_tf2_test.py
0 → 100644
View file @
871df79f
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.core.bipartite_matcher."""
import
unittest
import
numpy
as
np
import
tensorflow.compat.v1
as
tf
from
object_detection.utils
import
test_case
from
object_detection.utils
import
tf_version
if
tf_version
.
is_tf2
():
from
object_detection.matchers
import
hungarian_matcher
# pylint: disable=g-import-not-at-top
@
unittest
.
skipIf
(
tf_version
.
is_tf1
(),
'Skipping TF2.X only test.'
)
class
HungarianBipartiteMatcherTest
(
test_case
.
TestCase
):
def
test_get_expected_matches_when_all_rows_are_valid
(
self
):
similarity_matrix
=
np
.
array
([[
0.50
,
0.1
,
0.8
],
[
0.15
,
0.2
,
0.3
]],
dtype
=
np
.
float32
)
valid_rows
=
np
.
ones
([
2
],
dtype
=
np
.
bool
)
expected_match_results
=
[
-
1
,
1
,
0
]
matcher
=
hungarian_matcher
.
HungarianBipartiteMatcher
()
match_results_out
=
matcher
.
match
(
similarity_matrix
,
valid_rows
=
valid_rows
)
self
.
assertAllEqual
(
match_results_out
.
_match_results
.
numpy
(),
expected_match_results
)
def
test_get_expected_matches_with_all_rows_be_default
(
self
):
similarity_matrix
=
np
.
array
([[
0.50
,
0.1
,
0.8
],
[
0.15
,
0.2
,
0.3
]],
dtype
=
np
.
float32
)
expected_match_results
=
[
-
1
,
1
,
0
]
matcher
=
hungarian_matcher
.
HungarianBipartiteMatcher
()
match_results_out
=
matcher
.
match
(
similarity_matrix
)
self
.
assertAllEqual
(
match_results_out
.
_match_results
.
numpy
(),
expected_match_results
)
def
test_get_no_matches_with_zero_valid_rows
(
self
):
similarity_matrix
=
np
.
array
([[
0.50
,
0.1
,
0.8
],
[
0.15
,
0.2
,
0.3
]],
dtype
=
np
.
float32
)
valid_rows
=
np
.
zeros
([
2
],
dtype
=
np
.
bool
)
expected_match_results
=
[
-
1
,
-
1
,
-
1
]
matcher
=
hungarian_matcher
.
HungarianBipartiteMatcher
()
match_results_out
=
matcher
.
match
(
similarity_matrix
,
valid_rows
=
valid_rows
)
self
.
assertAllEqual
(
match_results_out
.
_match_results
.
numpy
(),
expected_match_results
)
def
test_get_expected_matches_with_only_one_valid_row
(
self
):
similarity_matrix
=
np
.
array
([[
0.50
,
0.1
,
0.8
],
[
0.15
,
0.2
,
0.3
]],
dtype
=
np
.
float32
)
valid_rows
=
np
.
array
([
True
,
False
],
dtype
=
np
.
bool
)
expected_match_results
=
[
-
1
,
-
1
,
0
]
matcher
=
hungarian_matcher
.
HungarianBipartiteMatcher
()
match_results_out
=
matcher
.
match
(
similarity_matrix
,
valid_rows
=
valid_rows
)
self
.
assertAllEqual
(
match_results_out
.
_match_results
.
numpy
(),
expected_match_results
)
def
test_get_expected_matches_with_only_one_valid_row_at_bottom
(
self
):
similarity_matrix
=
np
.
array
([[
0.15
,
0.2
,
0.3
],
[
0.50
,
0.1
,
0.8
]],
dtype
=
np
.
float32
)
valid_rows
=
np
.
array
([
False
,
True
],
dtype
=
np
.
bool
)
expected_match_results
=
[
-
1
,
-
1
,
0
]
matcher
=
hungarian_matcher
.
HungarianBipartiteMatcher
()
match_results_out
=
matcher
.
match
(
similarity_matrix
,
valid_rows
=
valid_rows
)
self
.
assertAllEqual
(
match_results_out
.
_match_results
.
numpy
(),
expected_match_results
)
def
test_get_expected_matches_with_two_valid_rows
(
self
):
similarity_matrix
=
np
.
array
([[
0.15
,
0.2
,
0.3
],
[
0.50
,
0.1
,
0.8
],
[
0.84
,
0.32
,
0.2
]],
dtype
=
np
.
float32
)
valid_rows
=
np
.
array
([
True
,
False
,
True
],
dtype
=
np
.
bool
)
expected_match_results
=
[
1
,
-
1
,
0
]
matcher
=
hungarian_matcher
.
HungarianBipartiteMatcher
()
match_results_out
=
matcher
.
match
(
similarity_matrix
,
valid_rows
=
valid_rows
)
self
.
assertAllEqual
(
match_results_out
.
_match_results
.
numpy
(),
expected_match_results
)
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment