"tasks/git@developer.sourcefind.cn:OpenDAS/megatron-lm.git" did not exist on "ccae9dbdeb71ccb2809bc41b10dd3440ee1d037a"
Commit 420594a8 authored by anivegesana's avatar anivegesana
Browse files

Remove commented code

parent cd598da1
...@@ -3,10 +3,7 @@ import tensorflow as tf ...@@ -3,10 +3,7 @@ import tensorflow as tf
import tensorflow.keras as ks import tensorflow.keras as ks
import tensorflow.keras.backend as K import tensorflow.keras.backend as K
# from official.vision.beta.projects.yolo.ops import loss_utils
from official.vision.beta.projects.yolo.ops import box_ops from official.vision.beta.projects.yolo.ops import box_ops
# from official.vision.beta.projects.yolo.losses import yolo_loss
# from official.vision.beta.projects.yolo.ops import nms_ops
@ks.utils.register_keras_serializable(package='yolo') @ks.utils.register_keras_serializable(package='yolo')
...@@ -152,9 +149,6 @@ class YoloLayer(ks.Model): ...@@ -152,9 +149,6 @@ class YoloLayer(ks.Model):
return return
def get_generators(self, anchors, path_scale, path_key): def get_generators(self, anchors, path_scale, path_key):
# anchor_generator = loss_utils.GridGenerator(
# anchors, scale_anchors=path_scale)
# return anchor_generator
return None return None
def rm_nan_inf(self, x, val=0.0): def rm_nan_inf(self, x, val=0.0):
...@@ -183,10 +177,6 @@ class YoloLayer(ks.Model): ...@@ -183,10 +177,6 @@ class YoloLayer(ks.Model):
# in shape [1, height, width, 2] # in shape [1, height, width, 2]
centers, anchors = generator(height, width, batchsize, dtype=data.dtype) centers, anchors = generator(height, width, batchsize, dtype=data.dtype)
# # tempcode
# centers /= tf.cast([width, height], centers.dtype)
# anchors /= tf.cast([width, height], anchors.dtype)
# split the yolo detections into boxes, object score map, classes # split the yolo detections into boxes, object score map, classes
boxes, obns_scores, class_scores = tf.split( boxes, obns_scores, class_scores = tf.split(
data, [4, 1, self._classes], axis=-1) data, [4, 1, self._classes], axis=-1)
...@@ -195,17 +185,7 @@ class YoloLayer(ks.Model): ...@@ -195,17 +185,7 @@ class YoloLayer(ks.Model):
classes = class_scores.get_shape().as_list()[ classes = class_scores.get_shape().as_list()[
-1] #tf.shape(class_scores)[-1] -1] #tf.shape(class_scores)[-1]
# # configurable to use the new coordinates in scaled Yolo v4 or not # configurable to use the new coordinates in scaled Yolo v4 or not
# if not self._new_cords[key]:
# # coordinates from scaled yolov4
# _, _, boxes = yolo_loss.get_predicted_box(
# tf.cast(height, data.dtype), tf.cast(width, data.dtype), boxes,
# anchors, centers, scale_xy)
# else:
# # coordinates from regular yolov3 - v4
# _, _, boxes = yolo_loss.get_predicted_box_newcords(
# tf.cast(height, data.dtype), tf.cast(width, data.dtype), boxes,
# anchors, centers, scale_xy)
boxes = None boxes = None
# convert boxes from yolo(x, y, w. h) to tensorflow(ymin, xmin, ymax, xmax) # convert boxes from yolo(x, y, w. h) to tensorflow(ymin, xmin, ymax, xmax)
...@@ -251,54 +231,20 @@ class YoloLayer(ks.Model): ...@@ -251,54 +231,20 @@ class YoloLayer(ks.Model):
object_scores = K.concatenate(object_scores, axis=1) object_scores = K.concatenate(object_scores, axis=1)
class_scores = K.concatenate(class_scores, axis=1) class_scores = K.concatenate(class_scores, axis=1)
# # apply nms # greedy NMS
# if self._nms_type == 7: boxes = tf.cast(boxes, dtype=tf.float32)
# boxes, class_scores, object_scores = nms_ops.non_max_suppression2( class_scores = tf.cast(class_scores, dtype=tf.float32)
# boxes, nms_items = tf.image.combined_non_max_suppression(
# class_scores, tf.expand_dims(boxes, axis=-2),
# object_scores, class_scores,
# self._max_boxes, self._pre_nms_points,
# pre_nms_thresh = self._thresh, self._max_boxes,
# nms_thresh = self._nms_thresh, iou_threshold=self._nms_thresh,
# prenms_top_k=self._pre_nms_points) score_threshold=self._thresh)
# elif self._nms_type == 6: # cast the boxes and predicitons abck to original datatype
# boxes, class_scores, object_scores = nms_ops.nms( boxes = tf.cast(nms_items.nmsed_boxes, object_scores.dtype)
# boxes, class_scores = tf.cast(nms_items.nmsed_classes, object_scores.dtype)
# class_scores, object_scores = tf.cast(nms_items.nmsed_scores, object_scores.dtype)
# object_scores,
# self._max_boxes,
# self._thresh,
# self._nms_thresh,
# prenms_top_k=self._pre_nms_points)
# elif self._nms_type == 1:
# # greedy NMS
# boxes = tf.cast(boxes, dtype=tf.float32)
# class_scores = tf.cast(class_scores, dtype=tf.float32)
# nms_items = tf.image.combined_non_max_suppression(
# tf.expand_dims(boxes, axis=-2),
# class_scores,
# self._pre_nms_points,
# self._max_boxes,
# iou_threshold=self._nms_thresh,
# score_threshold=self._thresh)
# # cast the boxes and predicitons abck to original datatype
# boxes = tf.cast(nms_items.nmsed_boxes, object_scores.dtype)
# class_scores = tf.cast(nms_items.nmsed_classes, object_scores.dtype)
# object_scores = tf.cast(nms_items.nmsed_scores, object_scores.dtype)
#
# else:
# boxes = tf.cast(boxes, dtype=tf.float32)
# class_scores = tf.cast(class_scores, dtype=tf.float32)
# boxes, confidence, classes, valid = self._nms.complete_nms(
# tf.expand_dims(boxes, axis=-2),
# class_scores,
# pre_nms_top_k=self._pre_nms_points,
# max_num_detections=self._max_boxes,
# nms_iou_threshold=self._nms_thresh,
# pre_nms_score_threshold=self._thresh)
# boxes = tf.cast(boxes, object_scores.dtype)
# class_scores = tf.cast(classes, object_scores.dtype)
# object_scores = tf.cast(confidence, object_scores.dtype)
# compute the number of valid detections # compute the number of valid detections
num_detections = tf.math.reduce_sum(tf.math.ceil(object_scores), axis=-1) num_detections = tf.math.reduce_sum(tf.math.ceil(object_scores), axis=-1)
...@@ -318,27 +264,6 @@ class YoloLayer(ks.Model): ...@@ -318,27 +264,6 @@ class YoloLayer(ks.Model):
Done in the detection generator because all parameters are the same Done in the detection generator because all parameters are the same
across both loss and detection generator across both loss and detection generator
""" """
# loss_dict = {}
# for key in self._keys:
# loss_dict[key] = yolo_loss.Yolo_Loss(
# classes=self._classes,
# anchors=self._anchors,
# darknet=self._darknet,
# truth_thresh=self._truth_thresh[key],
# ignore_thresh=self._ignore_thresh[key],
# loss_type=self._loss_type[key],
# iou_normalizer=self._iou_normalizer[key],
# cls_normalizer=self._cls_normalizer[key],
# obj_normalizer=self._obj_normalizer[key],
# new_cords=self._new_cords[key],
# objectness_smooth=self._objectness_smooth[key],
# use_scaled_loss=self._use_scaled_loss,
# label_smoothing=self._label_smoothing,
# mask=self._masks[key],
# max_delta=self._max_delta[key],
# scale_anchors=self._path_scale[key],
# scale_x_y=self._scale_xy[key])
# return loss_dict
return None return None
def get_config(self): def get_config(self):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment