Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
420594a8
Commit
420594a8
authored
Aug 31, 2021
by
anivegesana
Browse files
Remove commented code
parent
cd598da1
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
15 additions
and
90 deletions
+15
-90
official/vision/beta/projects/yolo/modeling/layers/detection_generator.py
...beta/projects/yolo/modeling/layers/detection_generator.py
+15
-90
No files found.
official/vision/beta/projects/yolo/modeling/layers/detection_generator.py
View file @
420594a8
...
...
@@ -3,10 +3,7 @@ import tensorflow as tf
import
tensorflow.keras
as
ks
import
tensorflow.keras.backend
as
K
# from official.vision.beta.projects.yolo.ops import loss_utils
from
official.vision.beta.projects.yolo.ops
import
box_ops
# from official.vision.beta.projects.yolo.losses import yolo_loss
# from official.vision.beta.projects.yolo.ops import nms_ops
@
ks
.
utils
.
register_keras_serializable
(
package
=
'yolo'
)
...
...
@@ -152,9 +149,6 @@ class YoloLayer(ks.Model):
return
def
get_generators
(
self
,
anchors
,
path_scale
,
path_key
):
# anchor_generator = loss_utils.GridGenerator(
# anchors, scale_anchors=path_scale)
# return anchor_generator
return
None
def
rm_nan_inf
(
self
,
x
,
val
=
0.0
):
...
...
@@ -183,10 +177,6 @@ class YoloLayer(ks.Model):
# in shape [1, height, width, 2]
centers
,
anchors
=
generator
(
height
,
width
,
batchsize
,
dtype
=
data
.
dtype
)
# # tempcode
# centers /= tf.cast([width, height], centers.dtype)
# anchors /= tf.cast([width, height], anchors.dtype)
# split the yolo detections into boxes, object score map, classes
boxes
,
obns_scores
,
class_scores
=
tf
.
split
(
data
,
[
4
,
1
,
self
.
_classes
],
axis
=-
1
)
...
...
@@ -195,17 +185,7 @@ class YoloLayer(ks.Model):
classes
=
class_scores
.
get_shape
().
as_list
()[
-
1
]
#tf.shape(class_scores)[-1]
# # configurable to use the new coordinates in scaled Yolo v4 or not
# if not self._new_cords[key]:
# # coordinates from scaled yolov4
# _, _, boxes = yolo_loss.get_predicted_box(
# tf.cast(height, data.dtype), tf.cast(width, data.dtype), boxes,
# anchors, centers, scale_xy)
# else:
# # coordinates from regular yolov3 - v4
# _, _, boxes = yolo_loss.get_predicted_box_newcords(
# tf.cast(height, data.dtype), tf.cast(width, data.dtype), boxes,
# anchors, centers, scale_xy)
# configurable to use the new coordinates in scaled Yolo v4 or not
boxes
=
None
# convert boxes from yolo(x, y, w. h) to tensorflow(ymin, xmin, ymax, xmax)
...
...
@@ -251,54 +231,20 @@ class YoloLayer(ks.Model):
object_scores
=
K
.
concatenate
(
object_scores
,
axis
=
1
)
class_scores
=
K
.
concatenate
(
class_scores
,
axis
=
1
)
# # apply nms
# if self._nms_type == 7:
# boxes, class_scores, object_scores = nms_ops.non_max_suppression2(
# boxes,
# class_scores,
# object_scores,
# self._max_boxes,
# pre_nms_thresh = self._thresh,
# nms_thresh = self._nms_thresh,
# prenms_top_k=self._pre_nms_points)
# elif self._nms_type == 6:
# boxes, class_scores, object_scores = nms_ops.nms(
# boxes,
# class_scores,
# object_scores,
# self._max_boxes,
# self._thresh,
# self._nms_thresh,
# prenms_top_k=self._pre_nms_points)
# elif self._nms_type == 1:
# # greedy NMS
# boxes = tf.cast(boxes, dtype=tf.float32)
# class_scores = tf.cast(class_scores, dtype=tf.float32)
# nms_items = tf.image.combined_non_max_suppression(
# tf.expand_dims(boxes, axis=-2),
# class_scores,
# self._pre_nms_points,
# self._max_boxes,
# iou_threshold=self._nms_thresh,
# score_threshold=self._thresh)
# # cast the boxes and predicitons abck to original datatype
# boxes = tf.cast(nms_items.nmsed_boxes, object_scores.dtype)
# class_scores = tf.cast(nms_items.nmsed_classes, object_scores.dtype)
# object_scores = tf.cast(nms_items.nmsed_scores, object_scores.dtype)
#
# else:
# boxes = tf.cast(boxes, dtype=tf.float32)
# class_scores = tf.cast(class_scores, dtype=tf.float32)
# boxes, confidence, classes, valid = self._nms.complete_nms(
# tf.expand_dims(boxes, axis=-2),
# class_scores,
# pre_nms_top_k=self._pre_nms_points,
# max_num_detections=self._max_boxes,
# nms_iou_threshold=self._nms_thresh,
# pre_nms_score_threshold=self._thresh)
# boxes = tf.cast(boxes, object_scores.dtype)
# class_scores = tf.cast(classes, object_scores.dtype)
# object_scores = tf.cast(confidence, object_scores.dtype)
# greedy NMS
boxes
=
tf
.
cast
(
boxes
,
dtype
=
tf
.
float32
)
class_scores
=
tf
.
cast
(
class_scores
,
dtype
=
tf
.
float32
)
nms_items
=
tf
.
image
.
combined_non_max_suppression
(
tf
.
expand_dims
(
boxes
,
axis
=-
2
),
class_scores
,
self
.
_pre_nms_points
,
self
.
_max_boxes
,
iou_threshold
=
self
.
_nms_thresh
,
score_threshold
=
self
.
_thresh
)
# cast the boxes and predicitons abck to original datatype
boxes
=
tf
.
cast
(
nms_items
.
nmsed_boxes
,
object_scores
.
dtype
)
class_scores
=
tf
.
cast
(
nms_items
.
nmsed_classes
,
object_scores
.
dtype
)
object_scores
=
tf
.
cast
(
nms_items
.
nmsed_scores
,
object_scores
.
dtype
)
# compute the number of valid detections
num_detections
=
tf
.
math
.
reduce_sum
(
tf
.
math
.
ceil
(
object_scores
),
axis
=-
1
)
...
...
@@ -318,27 +264,6 @@ class YoloLayer(ks.Model):
Done in the detection generator because all parameters are the same
across both loss and detection generator
"""
# loss_dict = {}
# for key in self._keys:
# loss_dict[key] = yolo_loss.Yolo_Loss(
# classes=self._classes,
# anchors=self._anchors,
# darknet=self._darknet,
# truth_thresh=self._truth_thresh[key],
# ignore_thresh=self._ignore_thresh[key],
# loss_type=self._loss_type[key],
# iou_normalizer=self._iou_normalizer[key],
# cls_normalizer=self._cls_normalizer[key],
# obj_normalizer=self._obj_normalizer[key],
# new_cords=self._new_cords[key],
# objectness_smooth=self._objectness_smooth[key],
# use_scaled_loss=self._use_scaled_loss,
# label_smoothing=self._label_smoothing,
# mask=self._masks[key],
# max_delta=self._max_delta[key],
# scale_anchors=self._path_scale[key],
# scale_x_y=self._scale_xy[key])
# return loss_dict
return
None
def
get_config
(
self
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment