Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
2c6f12e3
Commit
2c6f12e3
authored
Apr 25, 2020
by
Hongkun Yu
Committed by
A. Unique TensorFlower
Apr 25, 2020
Browse files
Remove utils/logs usage for official models.
PiperOrigin-RevId: 308451074
parent
562e1978
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
24 additions
and
61 deletions
+24
-61
official/benchmark/models/resnet_cifar_main.py
official/benchmark/models/resnet_cifar_main.py
+1
-3
official/benchmark/models/resnet_imagenet_main.py
official/benchmark/models/resnet_imagenet_main.py
+1
-3
official/nlp/transformer/transformer_main.py
official/nlp/transformer/transformer_main.py
+18
-20
official/recommendation/data_preprocessing.py
official/recommendation/data_preprocessing.py
+2
-7
official/recommendation/ncf_keras_main.py
official/recommendation/ncf_keras_main.py
+1
-6
official/recommendation/neumf_model.py
official/recommendation/neumf_model.py
+0
-19
official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py
...n/image_classification/resnet/resnet_ctl_imagenet_main.py
+1
-3
No files found.
official/benchmark/models/resnet_cifar_main.py
View file @
2c6f12e3
...
@@ -27,7 +27,6 @@ from official.benchmark.models import cifar_preprocessing
...
@@ -27,7 +27,6 @@ from official.benchmark.models import cifar_preprocessing
from
official.benchmark.models
import
resnet_cifar_model
from
official.benchmark.models
import
resnet_cifar_model
from
official.benchmark.models
import
synthetic_util
from
official.benchmark.models
import
synthetic_util
from
official.utils.flags
import
core
as
flags_core
from
official.utils.flags
import
core
as
flags_core
from
official.utils.logs
import
logger
from
official.utils.misc
import
distribution_utils
from
official.utils.misc
import
distribution_utils
from
official.utils.misc
import
keras_utils
from
official.utils.misc
import
keras_utils
from
official.vision.image_classification.resnet
import
common
from
official.vision.image_classification.resnet
import
common
...
@@ -277,8 +276,7 @@ def define_cifar_flags():
...
@@ -277,8 +276,7 @@ def define_cifar_flags():
def
main
(
_
):
def
main
(
_
):
with
logger
.
benchmark_context
(
flags
.
FLAGS
):
return
run
(
flags
.
FLAGS
)
return
run
(
flags
.
FLAGS
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
official/benchmark/models/resnet_imagenet_main.py
View file @
2c6f12e3
...
@@ -28,7 +28,6 @@ import tensorflow as tf
...
@@ -28,7 +28,6 @@ import tensorflow as tf
import
tensorflow_model_optimization
as
tfmot
import
tensorflow_model_optimization
as
tfmot
from
official.modeling
import
performance
from
official.modeling
import
performance
from
official.utils.flags
import
core
as
flags_core
from
official.utils.flags
import
core
as
flags_core
from
official.utils.logs
import
logger
from
official.utils.misc
import
distribution_utils
from
official.utils.misc
import
distribution_utils
from
official.utils.misc
import
keras_utils
from
official.utils.misc
import
keras_utils
from
official.utils.misc
import
model_helpers
from
official.utils.misc
import
model_helpers
...
@@ -294,8 +293,7 @@ def define_imagenet_keras_flags():
...
@@ -294,8 +293,7 @@ def define_imagenet_keras_flags():
def
main
(
_
):
def
main
(
_
):
model_helpers
.
apply_clean
(
flags
.
FLAGS
)
model_helpers
.
apply_clean
(
flags
.
FLAGS
)
with
logger
.
benchmark_context
(
flags
.
FLAGS
):
stats
=
run
(
flags
.
FLAGS
)
stats
=
run
(
flags
.
FLAGS
)
logging
.
info
(
'Run stats:
\n
%s'
,
stats
)
logging
.
info
(
'Run stats:
\n
%s'
,
stats
)
...
...
official/nlp/transformer/transformer_main.py
View file @
2c6f12e3
...
@@ -39,7 +39,6 @@ from official.nlp.transformer import transformer
...
@@ -39,7 +39,6 @@ from official.nlp.transformer import transformer
from
official.nlp.transformer
import
translate
from
official.nlp.transformer
import
translate
from
official.nlp.transformer.utils
import
tokenizer
from
official.nlp.transformer.utils
import
tokenizer
from
official.utils.flags
import
core
as
flags_core
from
official.utils.flags
import
core
as
flags_core
from
official.utils.logs
import
logger
from
official.utils.misc
import
distribution_utils
from
official.utils.misc
import
distribution_utils
from
official.utils.misc
import
keras_utils
from
official.utils.misc
import
keras_utils
...
@@ -471,25 +470,24 @@ def _ensure_dir(log_dir):
...
@@ -471,25 +470,24 @@ def _ensure_dir(log_dir):
def
main
(
_
):
def
main
(
_
):
flags_obj
=
flags
.
FLAGS
flags_obj
=
flags
.
FLAGS
with
logger
.
benchmark_context
(
flags_obj
):
task
=
TransformerTask
(
flags_obj
)
task
=
TransformerTask
(
flags_obj
)
# Execute flag override logic for better model performance
# Execute flag override logic for better model performance
if
flags_obj
.
tf_gpu_thread_mode
:
if
flags_obj
.
tf_gpu_thread_mode
:
keras_utils
.
set_gpu_thread_mode_and_count
(
keras_utils
.
set_gpu_thread_mode_and_count
(
per_gpu_thread_count
=
flags_obj
.
per_gpu_thread_count
,
per_gpu_thread_count
=
flags_obj
.
per_gpu_thread_count
,
gpu_thread_mode
=
flags_obj
.
tf_gpu_thread_mode
,
gpu_thread_mode
=
flags_obj
.
tf_gpu_thread_mode
,
num_gpus
=
flags_obj
.
num_gpus
,
num_gpus
=
flags_obj
.
num_gpus
,
datasets_num_private_threads
=
flags_obj
.
datasets_num_private_threads
)
datasets_num_private_threads
=
flags_obj
.
datasets_num_private_threads
)
if
flags_obj
.
mode
==
"train"
:
if
flags_obj
.
mode
==
"train"
:
task
.
train
()
task
.
train
()
elif
flags_obj
.
mode
==
"predict"
:
elif
flags_obj
.
mode
==
"predict"
:
task
.
predict
()
task
.
predict
()
elif
flags_obj
.
mode
==
"eval"
:
elif
flags_obj
.
mode
==
"eval"
:
task
.
eval
()
task
.
eval
()
else
:
else
:
raise
ValueError
(
"Invalid mode {}"
.
format
(
flags_obj
.
mode
))
raise
ValueError
(
"Invalid mode {}"
.
format
(
flags_obj
.
mode
))
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
official/recommendation/data_preprocessing.py
View file @
2c6f12e3
...
@@ -22,19 +22,17 @@ import os
...
@@ -22,19 +22,17 @@ import os
import
pickle
import
pickle
import
time
import
time
import
timeit
import
timeit
import
typing
# pylint: disable=wrong-import-order
# pylint: disable=wrong-import-order
from
absl
import
logging
import
numpy
as
np
import
numpy
as
np
import
pandas
as
pd
import
pandas
as
pd
import
tensorflow
as
tf
import
tensorflow
as
tf
from
absl
import
logg
ing
import
typ
ing
# pylint: enable=wrong-import-order
# pylint: enable=wrong-import-order
from
official.recommendation
import
constants
as
rconst
from
official.recommendation
import
constants
as
rconst
from
official.recommendation
import
data_pipeline
from
official.recommendation
import
data_pipeline
from
official.recommendation
import
movielens
from
official.recommendation
import
movielens
from
official.utils.logs
import
mlperf_helper
DATASET_TO_NUM_USERS_AND_ITEMS
=
{
DATASET_TO_NUM_USERS_AND_ITEMS
=
{
...
@@ -126,9 +124,6 @@ def _filter_index_sort(raw_rating_path, cache_path):
...
@@ -126,9 +124,6 @@ def _filter_index_sort(raw_rating_path, cache_path):
num_users
=
len
(
original_users
)
num_users
=
len
(
original_users
)
num_items
=
len
(
original_items
)
num_items
=
len
(
original_items
)
mlperf_helper
.
ncf_print
(
key
=
mlperf_helper
.
TAGS
.
PREPROC_HP_NUM_EVAL
,
value
=
rconst
.
NUM_EVAL_NEGATIVES
)
assert
num_users
<=
np
.
iinfo
(
rconst
.
USER_DTYPE
).
max
assert
num_users
<=
np
.
iinfo
(
rconst
.
USER_DTYPE
).
max
assert
num_items
<=
np
.
iinfo
(
rconst
.
ITEM_DTYPE
).
max
assert
num_items
<=
np
.
iinfo
(
rconst
.
ITEM_DTYPE
).
max
assert
df
[
movielens
.
USER_COLUMN
].
max
()
==
num_users
-
1
assert
df
[
movielens
.
USER_COLUMN
].
max
()
==
num_users
-
1
...
...
official/recommendation/ncf_keras_main.py
View file @
2c6f12e3
...
@@ -37,8 +37,6 @@ from official.recommendation import movielens
...
@@ -37,8 +37,6 @@ from official.recommendation import movielens
from
official.recommendation
import
ncf_common
from
official.recommendation
import
ncf_common
from
official.recommendation
import
ncf_input_pipeline
from
official.recommendation
import
ncf_input_pipeline
from
official.recommendation
import
neumf_model
from
official.recommendation
import
neumf_model
from
official.utils.logs
import
logger
from
official.utils.logs
import
mlperf_helper
from
official.utils.misc
import
distribution_utils
from
official.utils.misc
import
distribution_utils
from
official.utils.misc
import
keras_utils
from
official.utils.misc
import
keras_utils
from
official.utils.misc
import
model_helpers
from
official.utils.misc
import
model_helpers
...
@@ -551,10 +549,7 @@ def build_stats(loss, eval_result, time_callback):
...
@@ -551,10 +549,7 @@ def build_stats(loss, eval_result, time_callback):
def
main
(
_
):
def
main
(
_
):
with
logger
.
benchmark_context
(
FLAGS
),
\
run_ncf
(
FLAGS
)
mlperf_helper
.
LOGGER
(
FLAGS
.
output_ml_perf_compliance_logging
):
mlperf_helper
.
set_ncf_root
(
os
.
path
.
split
(
os
.
path
.
abspath
(
__file__
))[
0
])
run_ncf
(
FLAGS
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
official/recommendation/neumf_model.py
View file @
2c6f12e3
...
@@ -37,12 +37,10 @@ import sys
...
@@ -37,12 +37,10 @@ import sys
from
six.moves
import
xrange
# pylint: disable=redefined-builtin
from
six.moves
import
xrange
# pylint: disable=redefined-builtin
import
tensorflow
as
tf
import
tensorflow
as
tf
from
official.recommendation
import
constants
as
rconst
from
official.recommendation
import
constants
as
rconst
from
official.recommendation
import
movielens
from
official.recommendation
import
movielens
from
official.recommendation
import
ncf_common
from
official.recommendation
import
ncf_common
from
official.recommendation
import
stat_utils
from
official.recommendation
import
stat_utils
from
official.utils.logs
import
mlperf_helper
def
sparse_to_dense_grads
(
grads_and_vars
):
def
sparse_to_dense_grads
(
grads_and_vars
):
...
@@ -99,16 +97,6 @@ def neumf_model_fn(features, labels, mode, params):
...
@@ -99,16 +97,6 @@ def neumf_model_fn(features, labels, mode, params):
labels
=
tf
.
cast
(
labels
,
tf
.
int32
)
labels
=
tf
.
cast
(
labels
,
tf
.
int32
)
valid_pt_mask
=
features
[
rconst
.
VALID_POINT_MASK
]
valid_pt_mask
=
features
[
rconst
.
VALID_POINT_MASK
]
mlperf_helper
.
ncf_print
(
key
=
mlperf_helper
.
TAGS
.
OPT_NAME
,
value
=
"adam"
)
mlperf_helper
.
ncf_print
(
key
=
mlperf_helper
.
TAGS
.
OPT_LR
,
value
=
params
[
"learning_rate"
])
mlperf_helper
.
ncf_print
(
key
=
mlperf_helper
.
TAGS
.
OPT_HP_ADAM_BETA1
,
value
=
params
[
"beta1"
])
mlperf_helper
.
ncf_print
(
key
=
mlperf_helper
.
TAGS
.
OPT_HP_ADAM_BETA2
,
value
=
params
[
"beta2"
])
mlperf_helper
.
ncf_print
(
key
=
mlperf_helper
.
TAGS
.
OPT_HP_ADAM_EPSILON
,
value
=
params
[
"epsilon"
])
optimizer
=
tf
.
compat
.
v1
.
train
.
AdamOptimizer
(
optimizer
=
tf
.
compat
.
v1
.
train
.
AdamOptimizer
(
learning_rate
=
params
[
"learning_rate"
],
learning_rate
=
params
[
"learning_rate"
],
beta1
=
params
[
"beta1"
],
beta1
=
params
[
"beta1"
],
...
@@ -117,9 +105,6 @@ def neumf_model_fn(features, labels, mode, params):
...
@@ -117,9 +105,6 @@ def neumf_model_fn(features, labels, mode, params):
if
params
[
"use_tpu"
]:
if
params
[
"use_tpu"
]:
optimizer
=
tf
.
compat
.
v1
.
tpu
.
CrossShardOptimizer
(
optimizer
)
optimizer
=
tf
.
compat
.
v1
.
tpu
.
CrossShardOptimizer
(
optimizer
)
mlperf_helper
.
ncf_print
(
key
=
mlperf_helper
.
TAGS
.
MODEL_HP_LOSS_FN
,
value
=
mlperf_helper
.
TAGS
.
BCE
)
loss
=
tf
.
compat
.
v1
.
losses
.
sparse_softmax_cross_entropy
(
loss
=
tf
.
compat
.
v1
.
losses
.
sparse_softmax_cross_entropy
(
labels
=
labels
,
labels
=
labels
,
logits
=
softmax_logits
,
logits
=
softmax_logits
,
...
@@ -171,10 +156,6 @@ def construct_model(user_input, item_input, params):
...
@@ -171,10 +156,6 @@ def construct_model(user_input, item_input, params):
mf_dim
=
params
[
"mf_dim"
]
mf_dim
=
params
[
"mf_dim"
]
mlperf_helper
.
ncf_print
(
key
=
mlperf_helper
.
TAGS
.
MODEL_HP_MF_DIM
,
value
=
mf_dim
)
mlperf_helper
.
ncf_print
(
key
=
mlperf_helper
.
TAGS
.
MODEL_HP_MLP_LAYER_SIZES
,
value
=
model_layers
)
if
model_layers
[
0
]
%
2
!=
0
:
if
model_layers
[
0
]
%
2
!=
0
:
raise
ValueError
(
"The first layer size should be multiple of 2!"
)
raise
ValueError
(
"The first layer size should be multiple of 2!"
)
...
...
official/vision/image_classification/resnet/resnet_ctl_imagenet_main.py
View file @
2c6f12e3
...
@@ -27,7 +27,6 @@ import tensorflow as tf
...
@@ -27,7 +27,6 @@ import tensorflow as tf
from
official.modeling
import
performance
from
official.modeling
import
performance
from
official.staging.training
import
controller
from
official.staging.training
import
controller
from
official.utils.flags
import
core
as
flags_core
from
official.utils.flags
import
core
as
flags_core
from
official.utils.logs
import
logger
from
official.utils.misc
import
distribution_utils
from
official.utils.misc
import
distribution_utils
from
official.utils.misc
import
keras_utils
from
official.utils.misc
import
keras_utils
from
official.utils.misc
import
model_helpers
from
official.utils.misc
import
model_helpers
...
@@ -182,8 +181,7 @@ def run(flags_obj):
...
@@ -182,8 +181,7 @@ def run(flags_obj):
def
main
(
_
):
def
main
(
_
):
model_helpers
.
apply_clean
(
flags
.
FLAGS
)
model_helpers
.
apply_clean
(
flags
.
FLAGS
)
with
logger
.
benchmark_context
(
flags
.
FLAGS
):
stats
=
run
(
flags
.
FLAGS
)
stats
=
run
(
flags
.
FLAGS
)
logging
.
info
(
'Run stats:
\n
%s'
,
stats
)
logging
.
info
(
'Run stats:
\n
%s'
,
stats
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment