Commit 2c6f12e3 authored by Hongkun Yu's avatar Hongkun Yu Committed by A. Unique TensorFlower
Browse files

Remove utils/logs usage for official models.

PiperOrigin-RevId: 308451074
parent 562e1978
......@@ -27,7 +27,6 @@ from official.benchmark.models import cifar_preprocessing
from official.benchmark.models import resnet_cifar_model
from official.benchmark.models import synthetic_util
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils
from official.utils.misc import keras_utils
from official.vision.image_classification.resnet import common
......@@ -277,8 +276,7 @@ def define_cifar_flags():
def main(_):
with logger.benchmark_context(flags.FLAGS):
return run(flags.FLAGS)
return run(flags.FLAGS)
if __name__ == '__main__':
......
......@@ -28,7 +28,6 @@ import tensorflow as tf
import tensorflow_model_optimization as tfmot
from official.modeling import performance
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils
from official.utils.misc import keras_utils
from official.utils.misc import model_helpers
......@@ -294,8 +293,7 @@ def define_imagenet_keras_flags():
def main(_):
model_helpers.apply_clean(flags.FLAGS)
with logger.benchmark_context(flags.FLAGS):
stats = run(flags.FLAGS)
stats = run(flags.FLAGS)
logging.info('Run stats:\n%s', stats)
......
......@@ -39,7 +39,6 @@ from official.nlp.transformer import transformer
from official.nlp.transformer import translate
from official.nlp.transformer.utils import tokenizer
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils
from official.utils.misc import keras_utils
......@@ -471,25 +470,24 @@ def _ensure_dir(log_dir):
def main(_):
flags_obj = flags.FLAGS
with logger.benchmark_context(flags_obj):
task = TransformerTask(flags_obj)
# Execute flag override logic for better model performance
if flags_obj.tf_gpu_thread_mode:
keras_utils.set_gpu_thread_mode_and_count(
per_gpu_thread_count=flags_obj.per_gpu_thread_count,
gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
num_gpus=flags_obj.num_gpus,
datasets_num_private_threads=flags_obj.datasets_num_private_threads)
if flags_obj.mode == "train":
task.train()
elif flags_obj.mode == "predict":
task.predict()
elif flags_obj.mode == "eval":
task.eval()
else:
raise ValueError("Invalid mode {}".format(flags_obj.mode))
task = TransformerTask(flags_obj)
# Execute flag override logic for better model performance
if flags_obj.tf_gpu_thread_mode:
keras_utils.set_gpu_thread_mode_and_count(
per_gpu_thread_count=flags_obj.per_gpu_thread_count,
gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
num_gpus=flags_obj.num_gpus,
datasets_num_private_threads=flags_obj.datasets_num_private_threads)
if flags_obj.mode == "train":
task.train()
elif flags_obj.mode == "predict":
task.predict()
elif flags_obj.mode == "eval":
task.eval()
else:
raise ValueError("Invalid mode {}".format(flags_obj.mode))
if __name__ == "__main__":
......
......@@ -22,19 +22,17 @@ import os
import pickle
import time
import timeit
import typing
# pylint: disable=wrong-import-order
from absl import logging
import numpy as np
import pandas as pd
import tensorflow as tf
from absl import logging
import typing
# pylint: enable=wrong-import-order
from official.recommendation import constants as rconst
from official.recommendation import data_pipeline
from official.recommendation import movielens
from official.utils.logs import mlperf_helper
DATASET_TO_NUM_USERS_AND_ITEMS = {
......@@ -126,9 +124,6 @@ def _filter_index_sort(raw_rating_path, cache_path):
num_users = len(original_users)
num_items = len(original_items)
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.PREPROC_HP_NUM_EVAL,
value=rconst.NUM_EVAL_NEGATIVES)
assert num_users <= np.iinfo(rconst.USER_DTYPE).max
assert num_items <= np.iinfo(rconst.ITEM_DTYPE).max
assert df[movielens.USER_COLUMN].max() == num_users - 1
......
......@@ -37,8 +37,6 @@ from official.recommendation import movielens
from official.recommendation import ncf_common
from official.recommendation import ncf_input_pipeline
from official.recommendation import neumf_model
from official.utils.logs import logger
from official.utils.logs import mlperf_helper
from official.utils.misc import distribution_utils
from official.utils.misc import keras_utils
from official.utils.misc import model_helpers
......@@ -551,10 +549,7 @@ def build_stats(loss, eval_result, time_callback):
def main(_):
with logger.benchmark_context(FLAGS), \
mlperf_helper.LOGGER(FLAGS.output_ml_perf_compliance_logging):
mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
run_ncf(FLAGS)
run_ncf(FLAGS)
if __name__ == "__main__":
......
......@@ -37,12 +37,10 @@ import sys
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from official.recommendation import constants as rconst
from official.recommendation import movielens
from official.recommendation import ncf_common
from official.recommendation import stat_utils
from official.utils.logs import mlperf_helper
def sparse_to_dense_grads(grads_and_vars):
......@@ -99,16 +97,6 @@ def neumf_model_fn(features, labels, mode, params):
labels = tf.cast(labels, tf.int32)
valid_pt_mask = features[rconst.VALID_POINT_MASK]
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.OPT_NAME, value="adam")
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.OPT_LR,
value=params["learning_rate"])
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.OPT_HP_ADAM_BETA1,
value=params["beta1"])
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.OPT_HP_ADAM_BETA2,
value=params["beta2"])
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.OPT_HP_ADAM_EPSILON,
value=params["epsilon"])
optimizer = tf.compat.v1.train.AdamOptimizer(
learning_rate=params["learning_rate"],
beta1=params["beta1"],
......@@ -117,9 +105,6 @@ def neumf_model_fn(features, labels, mode, params):
if params["use_tpu"]:
optimizer = tf.compat.v1.tpu.CrossShardOptimizer(optimizer)
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.MODEL_HP_LOSS_FN,
value=mlperf_helper.TAGS.BCE)
loss = tf.compat.v1.losses.sparse_softmax_cross_entropy(
labels=labels,
logits=softmax_logits,
......@@ -171,10 +156,6 @@ def construct_model(user_input, item_input, params):
mf_dim = params["mf_dim"]
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.MODEL_HP_MF_DIM, value=mf_dim)
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.MODEL_HP_MLP_LAYER_SIZES,
value=model_layers)
if model_layers[0] % 2 != 0:
raise ValueError("The first layer size should be multiple of 2!")
......
......@@ -27,7 +27,6 @@ import tensorflow as tf
from official.modeling import performance
from official.staging.training import controller
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils
from official.utils.misc import keras_utils
from official.utils.misc import model_helpers
......@@ -182,8 +181,7 @@ def run(flags_obj):
def main(_):
model_helpers.apply_clean(flags.FLAGS)
with logger.benchmark_context(flags.FLAGS):
stats = run(flags.FLAGS)
stats = run(flags.FLAGS)
logging.info('Run stats:\n%s', stats)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment