Commit 0674ba0f authored by A. Unique TensorFlower's avatar A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 364722131
parent 5bb827c3
...@@ -20,7 +20,7 @@ task: ...@@ -20,7 +20,7 @@ task:
head: head:
num_convs: 4 num_convs: 4
num_filters: 24 num_filters: 24
use_separable_conv: false use_separable_conv: true
input_size: [256, 256, 3] input_size: [256, 256, 3]
max_level: 7 max_level: 7
min_level: 3 min_level: 3
......
...@@ -100,16 +100,7 @@ class RetinaNetHead(tf.keras.layers.Layer): ...@@ -100,16 +100,7 @@ class RetinaNetHead(tf.keras.layers.Layer):
'bias_initializer': tf.zeros_initializer(), 'bias_initializer': tf.zeros_initializer(),
'bias_regularizer': self._config_dict['bias_regularizer'], 'bias_regularizer': self._config_dict['bias_regularizer'],
} }
if self._config_dict['use_separable_conv']: if not self._config_dict['use_separable_conv']:
conv_kwargs.update({
'depthwise_initializer': tf.keras.initializers.RandomNormal(
stddev=0.01),
'pointwise_initializer': tf.keras.initializers.RandomNormal(
stddev=0.01),
'depthwise_regularizer': self._config_dict['kernel_regularizer'],
'pointwise_regularizer': self._config_dict['kernel_regularizer'],
})
else:
conv_kwargs.update({ conv_kwargs.update({
'kernel_initializer': tf.keras.initializers.RandomNormal( 'kernel_initializer': tf.keras.initializers.RandomNormal(
stddev=0.01), stddev=0.01),
...@@ -147,19 +138,9 @@ class RetinaNetHead(tf.keras.layers.Layer): ...@@ -147,19 +138,9 @@ class RetinaNetHead(tf.keras.layers.Layer):
'bias_initializer': tf.constant_initializer(-np.log((1 - 0.01) / 0.01)), 'bias_initializer': tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
'bias_regularizer': self._config_dict['bias_regularizer'], 'bias_regularizer': self._config_dict['bias_regularizer'],
} }
if self._config_dict['use_separable_conv']: if not self._config_dict['use_separable_conv']:
classifier_kwargs.update({
'depthwise_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'pointwise_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'depthwise_regularizer': self._config_dict['kernel_regularizer'],
'pointwise_regularizer': self._config_dict['kernel_regularizer'],
})
else:
classifier_kwargs.update({ classifier_kwargs.update({
'kernel_initializer': tf.keras.initializers.RandomNormal( 'kernel_initializer': tf.keras.initializers.RandomNormal(stddev=1e-5),
stddev=1e-5),
'kernel_regularizer': self._config_dict['kernel_regularizer'], 'kernel_regularizer': self._config_dict['kernel_regularizer'],
}) })
self._classifier = conv_op(name='scores', **classifier_kwargs) self._classifier = conv_op(name='scores', **classifier_kwargs)
...@@ -185,16 +166,7 @@ class RetinaNetHead(tf.keras.layers.Layer): ...@@ -185,16 +166,7 @@ class RetinaNetHead(tf.keras.layers.Layer):
'bias_initializer': tf.zeros_initializer(), 'bias_initializer': tf.zeros_initializer(),
'bias_regularizer': self._config_dict['bias_regularizer'], 'bias_regularizer': self._config_dict['bias_regularizer'],
} }
if self._config_dict['use_separable_conv']: if not self._config_dict['use_separable_conv']:
box_regressor_kwargs.update({
'depthwise_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'pointwise_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'depthwise_regularizer': self._config_dict['kernel_regularizer'],
'pointwise_regularizer': self._config_dict['kernel_regularizer'],
})
else:
box_regressor_kwargs.update({ box_regressor_kwargs.update({
'kernel_initializer': tf.keras.initializers.RandomNormal( 'kernel_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5), stddev=1e-5),
...@@ -331,25 +303,14 @@ class RPNHead(tf.keras.layers.Layer): ...@@ -331,25 +303,14 @@ class RPNHead(tf.keras.layers.Layer):
'filters': self._config_dict['num_filters'], 'filters': self._config_dict['num_filters'],
'kernel_size': 3, 'kernel_size': 3,
'padding': 'same', 'padding': 'same',
'bias_initializer': tf.zeros_initializer(),
'bias_regularizer': self._config_dict['bias_regularizer'],
} }
if self._config_dict['use_separable_conv']: if not self._config_dict['use_separable_conv']:
conv_kwargs.update({
'depthwise_initializer': tf.keras.initializers.RandomNormal(
stddev=0.01),
'pointwise_initializer': tf.keras.initializers.RandomNormal(
stddev=0.01),
'bias_initializer': tf.zeros_initializer(),
'depthwise_regularizer': self._config_dict['kernel_regularizer'],
'pointwise_regularizer': self._config_dict['kernel_regularizer'],
'bias_regularizer': self._config_dict['bias_regularizer'],
})
else:
conv_kwargs.update({ conv_kwargs.update({
'kernel_initializer': tf.keras.initializers.RandomNormal( 'kernel_initializer': tf.keras.initializers.RandomNormal(
stddev=0.01), stddev=0.01),
'bias_initializer': tf.zeros_initializer(),
'kernel_regularizer': self._config_dict['kernel_regularizer'], 'kernel_regularizer': self._config_dict['kernel_regularizer'],
'bias_regularizer': self._config_dict['bias_regularizer'],
}) })
bn_op = (tf.keras.layers.experimental.SyncBatchNormalization bn_op = (tf.keras.layers.experimental.SyncBatchNormalization
if self._config_dict['use_sync_bn'] if self._config_dict['use_sync_bn']
...@@ -377,25 +338,14 @@ class RPNHead(tf.keras.layers.Layer): ...@@ -377,25 +338,14 @@ class RPNHead(tf.keras.layers.Layer):
'filters': self._config_dict['num_anchors_per_location'], 'filters': self._config_dict['num_anchors_per_location'],
'kernel_size': 1, 'kernel_size': 1,
'padding': 'valid', 'padding': 'valid',
'bias_initializer': tf.zeros_initializer(),
'bias_regularizer': self._config_dict['bias_regularizer'],
} }
if self._config_dict['use_separable_conv']: if not self._config_dict['use_separable_conv']:
classifier_kwargs.update({
'depthwise_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'pointwise_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'bias_initializer': tf.zeros_initializer(),
'depthwise_regularizer': self._config_dict['kernel_regularizer'],
'pointwise_regularizer': self._config_dict['kernel_regularizer'],
'bias_regularizer': self._config_dict['bias_regularizer'],
})
else:
classifier_kwargs.update({ classifier_kwargs.update({
'kernel_initializer': tf.keras.initializers.RandomNormal( 'kernel_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5), stddev=1e-5),
'bias_initializer': tf.zeros_initializer(),
'kernel_regularizer': self._config_dict['kernel_regularizer'], 'kernel_regularizer': self._config_dict['kernel_regularizer'],
'bias_regularizer': self._config_dict['bias_regularizer'],
}) })
self._classifier = conv_op(name='rpn-scores', **classifier_kwargs) self._classifier = conv_op(name='rpn-scores', **classifier_kwargs)
...@@ -403,25 +353,14 @@ class RPNHead(tf.keras.layers.Layer): ...@@ -403,25 +353,14 @@ class RPNHead(tf.keras.layers.Layer):
'filters': 4 * self._config_dict['num_anchors_per_location'], 'filters': 4 * self._config_dict['num_anchors_per_location'],
'kernel_size': 1, 'kernel_size': 1,
'padding': 'valid', 'padding': 'valid',
'bias_initializer': tf.zeros_initializer(),
'bias_regularizer': self._config_dict['bias_regularizer'],
} }
if self._config_dict['use_separable_conv']: if not self._config_dict['use_separable_conv']:
box_regressor_kwargs.update({
'depthwise_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'pointwise_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'bias_initializer': tf.zeros_initializer(),
'depthwise_regularizer': self._config_dict['kernel_regularizer'],
'pointwise_regularizer': self._config_dict['kernel_regularizer'],
'bias_regularizer': self._config_dict['bias_regularizer'],
})
else:
box_regressor_kwargs.update({ box_regressor_kwargs.update({
'kernel_initializer': tf.keras.initializers.RandomNormal( 'kernel_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5), stddev=1e-5),
'bias_initializer': tf.zeros_initializer(),
'kernel_regularizer': self._config_dict['kernel_regularizer'], 'kernel_regularizer': self._config_dict['kernel_regularizer'],
'bias_regularizer': self._config_dict['bias_regularizer'],
}) })
self._box_regressor = conv_op(name='rpn-boxes', **box_regressor_kwargs) self._box_regressor = conv_op(name='rpn-boxes', **box_regressor_kwargs)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment