Commit 0674ba0f authored by A. Unique TensorFlower's avatar A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 364722131
parent 5bb827c3
......@@ -20,7 +20,7 @@ task:
head:
num_convs: 4
num_filters: 24
use_separable_conv: false
use_separable_conv: true
input_size: [256, 256, 3]
max_level: 7
min_level: 3
......
......@@ -100,16 +100,7 @@ class RetinaNetHead(tf.keras.layers.Layer):
'bias_initializer': tf.zeros_initializer(),
'bias_regularizer': self._config_dict['bias_regularizer'],
}
if self._config_dict['use_separable_conv']:
conv_kwargs.update({
'depthwise_initializer': tf.keras.initializers.RandomNormal(
stddev=0.01),
'pointwise_initializer': tf.keras.initializers.RandomNormal(
stddev=0.01),
'depthwise_regularizer': self._config_dict['kernel_regularizer'],
'pointwise_regularizer': self._config_dict['kernel_regularizer'],
})
else:
if not self._config_dict['use_separable_conv']:
conv_kwargs.update({
'kernel_initializer': tf.keras.initializers.RandomNormal(
stddev=0.01),
......@@ -147,19 +138,9 @@ class RetinaNetHead(tf.keras.layers.Layer):
'bias_initializer': tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
'bias_regularizer': self._config_dict['bias_regularizer'],
}
if self._config_dict['use_separable_conv']:
classifier_kwargs.update({
'depthwise_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'pointwise_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'depthwise_regularizer': self._config_dict['kernel_regularizer'],
'pointwise_regularizer': self._config_dict['kernel_regularizer'],
})
else:
if not self._config_dict['use_separable_conv']:
classifier_kwargs.update({
'kernel_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'kernel_initializer': tf.keras.initializers.RandomNormal(stddev=1e-5),
'kernel_regularizer': self._config_dict['kernel_regularizer'],
})
self._classifier = conv_op(name='scores', **classifier_kwargs)
......@@ -185,16 +166,7 @@ class RetinaNetHead(tf.keras.layers.Layer):
'bias_initializer': tf.zeros_initializer(),
'bias_regularizer': self._config_dict['bias_regularizer'],
}
if self._config_dict['use_separable_conv']:
box_regressor_kwargs.update({
'depthwise_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'pointwise_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'depthwise_regularizer': self._config_dict['kernel_regularizer'],
'pointwise_regularizer': self._config_dict['kernel_regularizer'],
})
else:
if not self._config_dict['use_separable_conv']:
box_regressor_kwargs.update({
'kernel_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
......@@ -331,25 +303,14 @@ class RPNHead(tf.keras.layers.Layer):
'filters': self._config_dict['num_filters'],
'kernel_size': 3,
'padding': 'same',
'bias_initializer': tf.zeros_initializer(),
'bias_regularizer': self._config_dict['bias_regularizer'],
}
if self._config_dict['use_separable_conv']:
conv_kwargs.update({
'depthwise_initializer': tf.keras.initializers.RandomNormal(
stddev=0.01),
'pointwise_initializer': tf.keras.initializers.RandomNormal(
stddev=0.01),
'bias_initializer': tf.zeros_initializer(),
'depthwise_regularizer': self._config_dict['kernel_regularizer'],
'pointwise_regularizer': self._config_dict['kernel_regularizer'],
'bias_regularizer': self._config_dict['bias_regularizer'],
})
else:
if not self._config_dict['use_separable_conv']:
conv_kwargs.update({
'kernel_initializer': tf.keras.initializers.RandomNormal(
stddev=0.01),
'bias_initializer': tf.zeros_initializer(),
'kernel_regularizer': self._config_dict['kernel_regularizer'],
'bias_regularizer': self._config_dict['bias_regularizer'],
})
bn_op = (tf.keras.layers.experimental.SyncBatchNormalization
if self._config_dict['use_sync_bn']
......@@ -377,25 +338,14 @@ class RPNHead(tf.keras.layers.Layer):
'filters': self._config_dict['num_anchors_per_location'],
'kernel_size': 1,
'padding': 'valid',
'bias_initializer': tf.zeros_initializer(),
'bias_regularizer': self._config_dict['bias_regularizer'],
}
if self._config_dict['use_separable_conv']:
classifier_kwargs.update({
'depthwise_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'pointwise_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'bias_initializer': tf.zeros_initializer(),
'depthwise_regularizer': self._config_dict['kernel_regularizer'],
'pointwise_regularizer': self._config_dict['kernel_regularizer'],
'bias_regularizer': self._config_dict['bias_regularizer'],
})
else:
if not self._config_dict['use_separable_conv']:
classifier_kwargs.update({
'kernel_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'bias_initializer': tf.zeros_initializer(),
'kernel_regularizer': self._config_dict['kernel_regularizer'],
'bias_regularizer': self._config_dict['bias_regularizer'],
})
self._classifier = conv_op(name='rpn-scores', **classifier_kwargs)
......@@ -403,25 +353,14 @@ class RPNHead(tf.keras.layers.Layer):
'filters': 4 * self._config_dict['num_anchors_per_location'],
'kernel_size': 1,
'padding': 'valid',
'bias_initializer': tf.zeros_initializer(),
'bias_regularizer': self._config_dict['bias_regularizer'],
}
if self._config_dict['use_separable_conv']:
box_regressor_kwargs.update({
'depthwise_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'pointwise_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'bias_initializer': tf.zeros_initializer(),
'depthwise_regularizer': self._config_dict['kernel_regularizer'],
'pointwise_regularizer': self._config_dict['kernel_regularizer'],
'bias_regularizer': self._config_dict['bias_regularizer'],
})
else:
if not self._config_dict['use_separable_conv']:
box_regressor_kwargs.update({
'kernel_initializer': tf.keras.initializers.RandomNormal(
stddev=1e-5),
'bias_initializer': tf.zeros_initializer(),
'kernel_regularizer': self._config_dict['kernel_regularizer'],
'bias_regularizer': self._config_dict['bias_regularizer'],
})
self._box_regressor = conv_op(name='rpn-boxes', **box_regressor_kwargs)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment