model_builder.py 49.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A function to build a DetectionModel from configuration."""
17

18
import functools
19
import sys
20
21
22
23
24
25
26
27
28
from object_detection.builders import anchor_generator_builder
from object_detection.builders import box_coder_builder
from object_detection.builders import box_predictor_builder
from object_detection.builders import hyperparams_builder
from object_detection.builders import image_resizer_builder
from object_detection.builders import losses_builder
from object_detection.builders import matcher_builder
from object_detection.builders import post_processing_builder
from object_detection.builders import region_similarity_calculator_builder as sim_calc
29
from object_detection.core import balanced_positive_negative_sampler as sampler
30
from object_detection.core import post_processing
31
from object_detection.core import target_assigner
32
33
from object_detection.meta_architectures import center_net_meta_arch
from object_detection.meta_architectures import context_rcnn_meta_arch
34
35
36
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.meta_architectures import rfcn_meta_arch
from object_detection.meta_architectures import ssd_meta_arch
37
from object_detection.predictors.heads import mask_head
38
from object_detection.protos import losses_pb2
39
from object_detection.protos import model_pb2
40
from object_detection.utils import label_map_util
41
from object_detection.utils import ops
42
from object_detection.utils import spatial_transform_ops as spatial_ops
43
44
45
46
47
48
49
50
51
from object_detection.utils import tf_version

## Feature Extractors for TF
## This section conditionally imports different feature extractors based on the
## Tensorflow version.
##
# pylint: disable=g-import-not-at-top
if tf_version.is_tf2():
  from object_detection.models import center_net_hourglass_feature_extractor
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
52
  from object_detection.models import center_net_mobilenet_v2_feature_extractor
53
  from object_detection.models import center_net_mobilenet_v2_fpn_feature_extractor
54
  from object_detection.models import center_net_resnet_feature_extractor
55
  from object_detection.models import center_net_resnet_v1_fpn_feature_extractor
56
57
58
  from object_detection.models import faster_rcnn_inception_resnet_v2_keras_feature_extractor as frcnn_inc_res_keras
  from object_detection.models import faster_rcnn_resnet_keras_feature_extractor as frcnn_resnet_keras
  from object_detection.models import ssd_resnet_v1_fpn_keras_feature_extractor as ssd_resnet_v1_fpn_keras
59
  from object_detection.models import faster_rcnn_resnet_v1_fpn_keras_feature_extractor as frcnn_resnet_fpn_keras
60
61
62
63
64
  from object_detection.models.ssd_mobilenet_v1_fpn_keras_feature_extractor import SSDMobileNetV1FpnKerasFeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_keras_feature_extractor import SSDMobileNetV1KerasFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_fpn_keras_feature_extractor import SSDMobileNetV2FpnKerasFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_keras_feature_extractor import SSDMobileNetV2KerasFeatureExtractor
  from object_detection.predictors import rfcn_keras_box_predictor
65
66
  if sys.version_info[0] >= 3:
    from object_detection.models import ssd_efficientnet_bifpn_feature_extractor as ssd_efficientnet_bifpn
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

if tf_version.is_tf1():
  from object_detection.models import faster_rcnn_inception_resnet_v2_feature_extractor as frcnn_inc_res
  from object_detection.models import faster_rcnn_inception_v2_feature_extractor as frcnn_inc_v2
  from object_detection.models import faster_rcnn_nas_feature_extractor as frcnn_nas
  from object_detection.models import faster_rcnn_pnas_feature_extractor as frcnn_pnas
  from object_detection.models import faster_rcnn_resnet_v1_feature_extractor as frcnn_resnet_v1
  from object_detection.models import ssd_resnet_v1_fpn_feature_extractor as ssd_resnet_v1_fpn
  from object_detection.models import ssd_resnet_v1_ppn_feature_extractor as ssd_resnet_v1_ppn
  from object_detection.models.embedded_ssd_mobilenet_v1_feature_extractor import EmbeddedSSDMobileNetV1FeatureExtractor
  from object_detection.models.ssd_inception_v2_feature_extractor import SSDInceptionV2FeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_fpn_feature_extractor import SSDMobileNetV2FpnFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_mnasfpn_feature_extractor import SSDMobileNetV2MnasFPNFeatureExtractor
  from object_detection.models.ssd_inception_v3_feature_extractor import SSDInceptionV3FeatureExtractor
  from object_detection.models.ssd_mobilenet_edgetpu_feature_extractor import SSDMobileNetEdgeTPUFeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_fpn_feature_extractor import SSDMobileNetV1FpnFeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_ppn_feature_extractor import SSDMobileNetV1PpnFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_feature_extractor import SSDMobileNetV2FeatureExtractor
  from object_detection.models.ssd_mobilenet_v3_feature_extractor import SSDMobileNetV3LargeFeatureExtractor
  from object_detection.models.ssd_mobilenet_v3_feature_extractor import SSDMobileNetV3SmallFeatureExtractor
88
89
90
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetCPUFeatureExtractor
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetDSPFeatureExtractor
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetEdgeTPUFeatureExtractor
91
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetGPUFeatureExtractor
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  from object_detection.models.ssd_pnasnet_feature_extractor import SSDPNASNetFeatureExtractor
  from object_detection.predictors import rfcn_box_predictor
# pylint: enable=g-import-not-at-top

if tf_version.is_tf2():
  SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = {
      'ssd_mobilenet_v1_keras': SSDMobileNetV1KerasFeatureExtractor,
      'ssd_mobilenet_v1_fpn_keras': SSDMobileNetV1FpnKerasFeatureExtractor,
      'ssd_mobilenet_v2_keras': SSDMobileNetV2KerasFeatureExtractor,
      'ssd_mobilenet_v2_fpn_keras': SSDMobileNetV2FpnKerasFeatureExtractor,
      'ssd_resnet50_v1_fpn_keras':
          ssd_resnet_v1_fpn_keras.SSDResNet50V1FpnKerasFeatureExtractor,
      'ssd_resnet101_v1_fpn_keras':
          ssd_resnet_v1_fpn_keras.SSDResNet101V1FpnKerasFeatureExtractor,
      'ssd_resnet152_v1_fpn_keras':
          ssd_resnet_v1_fpn_keras.SSDResNet152V1FpnKerasFeatureExtractor,
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
      'ssd_efficientnet-b0_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB0BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b1_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB1BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b2_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB2BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b3_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB3BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b4_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB4BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b5_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB5BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b6_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB6BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b7_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB7BiFPNKerasFeatureExtractor,
124
  }
125

126
127
128
129
130
131
132
133
134
  FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = {
      'faster_rcnn_resnet50_keras':
          frcnn_resnet_keras.FasterRCNNResnet50KerasFeatureExtractor,
      'faster_rcnn_resnet101_keras':
          frcnn_resnet_keras.FasterRCNNResnet101KerasFeatureExtractor,
      'faster_rcnn_resnet152_keras':
          frcnn_resnet_keras.FasterRCNNResnet152KerasFeatureExtractor,
      'faster_rcnn_inception_resnet_v2_keras':
      frcnn_inc_res_keras.FasterRCNNInceptionResnetV2KerasFeatureExtractor,
135
      'faster_rcnn_resnet50_fpn_keras':
136
          frcnn_resnet_fpn_keras.FasterRCNNResnet50FpnKerasFeatureExtractor,
137
      'faster_rcnn_resnet101_fpn_keras':
138
          frcnn_resnet_fpn_keras.FasterRCNNResnet101FpnKerasFeatureExtractor,
139
      'faster_rcnn_resnet152_fpn_keras':
140
          frcnn_resnet_fpn_keras.FasterRCNNResnet152FpnKerasFeatureExtractor,
141
  }
142

143
  CENTER_NET_EXTRACTOR_FUNCTION_MAP = {
144
145
146
147
      'resnet_v2_50':
          center_net_resnet_feature_extractor.resnet_v2_50,
      'resnet_v2_101':
          center_net_resnet_feature_extractor.resnet_v2_101,
Yu-hui Chen's avatar
Yu-hui Chen committed
148
149
150
151
      'resnet_v1_18_fpn':
          center_net_resnet_v1_fpn_feature_extractor.resnet_v1_18_fpn,
      'resnet_v1_34_fpn':
          center_net_resnet_v1_fpn_feature_extractor.resnet_v1_34_fpn,
152
153
154
155
      'resnet_v1_50_fpn':
          center_net_resnet_v1_fpn_feature_extractor.resnet_v1_50_fpn,
      'resnet_v1_101_fpn':
          center_net_resnet_v1_fpn_feature_extractor.resnet_v1_101_fpn,
156
157
158
159
160
161
162
163
      'hourglass_10':
          center_net_hourglass_feature_extractor.hourglass_10,
      'hourglass_20':
          center_net_hourglass_feature_extractor.hourglass_20,
      'hourglass_32':
          center_net_hourglass_feature_extractor.hourglass_32,
      'hourglass_52':
          center_net_hourglass_feature_extractor.hourglass_52,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
164
165
166
167
      'hourglass_104':
          center_net_hourglass_feature_extractor.hourglass_104,
      'mobilenet_v2':
          center_net_mobilenet_v2_feature_extractor.mobilenet_v2,
168
169
      'mobilenet_v2_fpn':
          center_net_mobilenet_v2_fpn_feature_extractor.mobilenet_v2_fpn,
170
171
172
      'mobilenet_v2_fpn_sep_conv':
          center_net_mobilenet_v2_fpn_feature_extractor
          .mobilenet_v2_fpn_sep_conv,
173
  }
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
  FEATURE_EXTRACTOR_MAPS = [
      CENTER_NET_EXTRACTOR_FUNCTION_MAP,
      FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP,
      SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP
  ]

if tf_version.is_tf1():
  SSD_FEATURE_EXTRACTOR_CLASS_MAP = {
      'ssd_inception_v2':
          SSDInceptionV2FeatureExtractor,
      'ssd_inception_v3':
          SSDInceptionV3FeatureExtractor,
      'ssd_mobilenet_v1':
          SSDMobileNetV1FeatureExtractor,
      'ssd_mobilenet_v1_fpn':
          SSDMobileNetV1FpnFeatureExtractor,
      'ssd_mobilenet_v1_ppn':
          SSDMobileNetV1PpnFeatureExtractor,
      'ssd_mobilenet_v2':
          SSDMobileNetV2FeatureExtractor,
      'ssd_mobilenet_v2_fpn':
          SSDMobileNetV2FpnFeatureExtractor,
      'ssd_mobilenet_v2_mnasfpn':
          SSDMobileNetV2MnasFPNFeatureExtractor,
      'ssd_mobilenet_v3_large':
          SSDMobileNetV3LargeFeatureExtractor,
      'ssd_mobilenet_v3_small':
          SSDMobileNetV3SmallFeatureExtractor,
      'ssd_mobilenet_edgetpu':
          SSDMobileNetEdgeTPUFeatureExtractor,
      'ssd_resnet50_v1_fpn':
          ssd_resnet_v1_fpn.SSDResnet50V1FpnFeatureExtractor,
      'ssd_resnet101_v1_fpn':
          ssd_resnet_v1_fpn.SSDResnet101V1FpnFeatureExtractor,
      'ssd_resnet152_v1_fpn':
          ssd_resnet_v1_fpn.SSDResnet152V1FpnFeatureExtractor,
      'ssd_resnet50_v1_ppn':
          ssd_resnet_v1_ppn.SSDResnet50V1PpnFeatureExtractor,
      'ssd_resnet101_v1_ppn':
          ssd_resnet_v1_ppn.SSDResnet101V1PpnFeatureExtractor,
      'ssd_resnet152_v1_ppn':
          ssd_resnet_v1_ppn.SSDResnet152V1PpnFeatureExtractor,
      'embedded_ssd_mobilenet_v1':
          EmbeddedSSDMobileNetV1FeatureExtractor,
      'ssd_pnasnet':
          SSDPNASNetFeatureExtractor,
221
222
223
224
225
226
227
228
      'ssd_mobiledet_cpu':
          SSDMobileDetCPUFeatureExtractor,
      'ssd_mobiledet_dsp':
          SSDMobileDetDSPFeatureExtractor,
      'ssd_mobiledet_edgetpu':
          SSDMobileDetEdgeTPUFeatureExtractor,
      'ssd_mobiledet_gpu':
          SSDMobileDetGPUFeatureExtractor,
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
  }

  FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP = {
      'faster_rcnn_nas':
      frcnn_nas.FasterRCNNNASFeatureExtractor,
      'faster_rcnn_pnas':
      frcnn_pnas.FasterRCNNPNASFeatureExtractor,
      'faster_rcnn_inception_resnet_v2':
      frcnn_inc_res.FasterRCNNInceptionResnetV2FeatureExtractor,
      'faster_rcnn_inception_v2':
      frcnn_inc_v2.FasterRCNNInceptionV2FeatureExtractor,
      'faster_rcnn_resnet50':
      frcnn_resnet_v1.FasterRCNNResnet50FeatureExtractor,
      'faster_rcnn_resnet101':
      frcnn_resnet_v1.FasterRCNNResnet101FeatureExtractor,
      'faster_rcnn_resnet152':
      frcnn_resnet_v1.FasterRCNNResnet152FeatureExtractor,
  }

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
248
249
  CENTER_NET_EXTRACTOR_FUNCTION_MAP = {}

250
251
  FEATURE_EXTRACTOR_MAPS = [
      SSD_FEATURE_EXTRACTOR_CLASS_MAP,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
252
253
      FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP,
      CENTER_NET_EXTRACTOR_FUNCTION_MAP
254
  ]
255

256
257
258
259
260
261
262

def _check_feature_extractor_exists(feature_extractor_type):
  feature_extractors = set().union(*FEATURE_EXTRACTOR_MAPS)
  if feature_extractor_type not in feature_extractors:
    raise ValueError('{} is not supported. See `model_builder.py` for features '
                     'extractors compatible with different versions of '
                     'Tensorflow'.format(feature_extractor_type))
263

264

265
266
267
def _build_ssd_feature_extractor(feature_extractor_config,
                                 is_training,
                                 freeze_batchnorm,
268
                                 reuse_weights=None):
269
270
271
272
273
  """Builds a ssd_meta_arch.SSDFeatureExtractor based on config.

  Args:
    feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
    is_training: True if this feature extractor is being built for training.
274
275
276
277
    freeze_batchnorm: Whether to freeze batch norm parameters during
      training or not. When training with a small batch size (e.g. 1), it is
      desirable to freeze batch norm update and use pretrained batch norm
      params.
278
279
280
281
282
283
284
285
286
287
288
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    ssd_meta_arch.SSDFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  depth_multiplier = feature_extractor_config.depth_multiplier
  min_depth = feature_extractor_config.min_depth
289
  pad_to_multiple = feature_extractor_config.pad_to_multiple
290
  use_explicit_padding = feature_extractor_config.use_explicit_padding
291
  use_depthwise = feature_extractor_config.use_depthwise
292

293
294
  is_keras = tf_version.is_tf2()
  if is_keras:
295
296
297
298
299
    conv_hyperparams = hyperparams_builder.KerasLayerHyperparams(
        feature_extractor_config.conv_hyperparams)
  else:
    conv_hyperparams = hyperparams_builder.build(
        feature_extractor_config.conv_hyperparams, is_training)
300
301
  override_base_feature_extractor_hyperparams = (
      feature_extractor_config.override_base_feature_extractor_hyperparams)
302

303
  if not is_keras and feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
304
305
    raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))

306
  if is_keras:
307
308
309
310
    feature_extractor_class = SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[
        feature_type]
  else:
    feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
  kwargs = {
      'is_training':
          is_training,
      'depth_multiplier':
          depth_multiplier,
      'min_depth':
          min_depth,
      'pad_to_multiple':
          pad_to_multiple,
      'use_explicit_padding':
          use_explicit_padding,
      'use_depthwise':
          use_depthwise,
      'override_base_feature_extractor_hyperparams':
          override_base_feature_extractor_hyperparams
  }

328
329
330
331
332
333
  if feature_extractor_config.HasField('replace_preprocessor_with_placeholder'):
    kwargs.update({
        'replace_preprocessor_with_placeholder':
            feature_extractor_config.replace_preprocessor_with_placeholder
    })

pkulzc's avatar
pkulzc committed
334
335
336
  if feature_extractor_config.HasField('num_layers'):
    kwargs.update({'num_layers': feature_extractor_config.num_layers})

337
  if is_keras:
338
339
340
341
342
343
344
345
346
347
348
    kwargs.update({
        'conv_hyperparams': conv_hyperparams,
        'inplace_batchnorm_update': False,
        'freeze_batchnorm': freeze_batchnorm
    })
  else:
    kwargs.update({
        'conv_hyperparams_fn': conv_hyperparams,
        'reuse_weights': reuse_weights,
    })

349

350
351
  if feature_extractor_config.HasField('fpn'):
    kwargs.update({
352
353
354
355
356
357
        'fpn_min_level':
            feature_extractor_config.fpn.min_level,
        'fpn_max_level':
            feature_extractor_config.fpn.max_level,
        'additional_layer_depth':
            feature_extractor_config.fpn.additional_layer_depth,
358
359
    })

360
361
362
363
364
365
366
367
  if feature_extractor_config.HasField('bifpn'):
    kwargs.update({
        'bifpn_min_level': feature_extractor_config.bifpn.min_level,
        'bifpn_max_level': feature_extractor_config.bifpn.max_level,
        'bifpn_num_iterations': feature_extractor_config.bifpn.num_iterations,
        'bifpn_num_filters': feature_extractor_config.bifpn.num_filters,
        'bifpn_combine_method': feature_extractor_config.bifpn.combine_method,
    })
368

369
  return feature_extractor_class(**kwargs)
370
371


372
def _build_ssd_model(ssd_config, is_training, add_summaries):
373
374
375
376
377
378
  """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.
379
    add_summaries: Whether to add tf summaries in the model.
380
381
  Returns:
    SSDMetaArch based on the config.
382

383
384
385
386
387
  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = ssd_config.num_classes
388
  _check_feature_extractor_exists(ssd_config.feature_extractor.type)
389
390

  # Feature extractor
391
  feature_extractor = _build_ssd_feature_extractor(
392
      feature_extractor_config=ssd_config.feature_extractor,
393
      freeze_batchnorm=ssd_config.freeze_batchnorm,
394
      is_training=is_training)
395
396
397
398
399

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)
400
  encode_background_as_zeros = ssd_config.encode_background_as_zeros
401
  negative_class_weight = ssd_config.negative_class_weight
402
403
  anchor_generator = anchor_generator_builder.build(
      ssd_config.anchor_generator)
404
405
  if feature_extractor.is_keras_model:
    ssd_box_predictor = box_predictor_builder.build_keras(
406
        hyperparams_fn=hyperparams_builder.KerasLayerHyperparams,
407
408
409
410
411
412
413
414
415
416
417
418
        freeze_batchnorm=ssd_config.freeze_batchnorm,
        inplace_batchnorm_update=False,
        num_predictions_per_location_list=anchor_generator
        .num_anchors_per_location(),
        box_predictor_config=ssd_config.box_predictor,
        is_training=is_training,
        num_classes=num_classes,
        add_background_class=ssd_config.add_background_class)
  else:
    ssd_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build, ssd_config.box_predictor, is_training,
        num_classes, ssd_config.add_background_class)
419
420
421
422
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
423
424
   localization_weight, hard_example_miner, random_example_sampler,
   expected_loss_weights_fn) = losses_builder.build(ssd_config.loss)
425
  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
426
  normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize
427
428
429
430

  equalization_loss_config = ops.EqualizationLossConfig(
      weight=ssd_config.loss.equalization_loss.weight,
      exclude_prefixes=ssd_config.loss.equalization_loss.exclude_prefixes)
431
432
433
434
435

  target_assigner_instance = target_assigner.TargetAssigner(
      region_similarity_calculator,
      matcher,
      box_coder,
436
      negative_class_weight=negative_class_weight)
437

438
  ssd_meta_arch_fn = ssd_meta_arch.SSDMetaArch
439
  kwargs = {}
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

  return ssd_meta_arch_fn(
      is_training=is_training,
      anchor_generator=anchor_generator,
      box_predictor=ssd_box_predictor,
      box_coder=box_coder,
      feature_extractor=feature_extractor,
      encode_background_as_zeros=encode_background_as_zeros,
      image_resizer_fn=image_resizer_fn,
      non_max_suppression_fn=non_max_suppression_fn,
      score_conversion_fn=score_conversion_fn,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      classification_loss_weight=classification_weight,
      localization_loss_weight=localization_weight,
      normalize_loss_by_num_matches=normalize_loss_by_num_matches,
      hard_example_miner=hard_example_miner,
457
      target_assigner_instance=target_assigner_instance,
458
      add_summaries=add_summaries,
459
460
      normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
461
      inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
462
      add_background_class=ssd_config.add_background_class,
463
      explicit_background_class=ssd_config.explicit_background_class,
464
      random_example_sampler=random_example_sampler,
465
466
467
468
      expected_loss_weights_fn=expected_loss_weights_fn,
      use_confidences_as_targets=ssd_config.use_confidences_as_targets,
      implicit_example_weight=ssd_config.implicit_example_weight,
      equalization_loss_config=equalization_loss_config,
469
470
      return_raw_detections_during_predict=(
          ssd_config.return_raw_detections_during_predict),
471
      **kwargs)
472
473
474


def _build_faster_rcnn_feature_extractor(
475
    feature_extractor_config, is_training, reuse_weights=True,
476
    inplace_batchnorm_update=False):
477
478
479
480
481
482
483
  """Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.
484
485
486
487
488
    inplace_batchnorm_update: Whether to update batch_norm inplace during
      training. This is required for batch norm to work correctly on TPUs. When
      this is false, user must add a control dependency on
      tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
      norm moving average parameters.
489
490
491
492
493
494
495

  Returns:
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
496
497
  if inplace_batchnorm_update:
    raise ValueError('inplace batchnorm updates not supported.')
498
499
500
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
501
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable
502
503
504
505
506
507
508

  if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
  return feature_extractor_class(
509
      is_training, first_stage_features_stride,
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
      batch_norm_trainable, reuse_weights=reuse_weights)


def _build_faster_rcnn_keras_feature_extractor(
    feature_extractor_config, is_training,
    inplace_batchnorm_update=False):
  """Builds a faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor from config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    inplace_batchnorm_update: Whether to update batch_norm inplace during
      training. This is required for batch norm to work correctly on TPUs. When
      this is false, user must add a control dependency on
      tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
      norm moving average parameters.

  Returns:
    faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  if inplace_batchnorm_update:
    raise ValueError('inplace batchnorm updates not supported.')
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable

  if feature_type not in FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

  kwargs = {}

  if feature_extractor_config.HasField('conv_hyperparams'):
    kwargs.update({
        'conv_hyperparams':
            hyperparams_builder.KerasLayerHyperparams(
                feature_extractor_config.conv_hyperparams),
        'override_base_feature_extractor_hyperparams':
            feature_extractor_config.override_base_feature_extractor_hyperparams
    })

  if feature_extractor_config.HasField('fpn'):
    kwargs.update({
        'fpn_min_level':
            feature_extractor_config.fpn.min_level,
        'fpn_max_level':
            feature_extractor_config.fpn.max_level,
        'additional_layer_depth':
            feature_extractor_config.fpn.additional_layer_depth,
    })

568
569
  return feature_extractor_class(
      is_training, first_stage_features_stride,
570
      batch_norm_trainable, **kwargs)
571
572


573
def _build_faster_rcnn_model(frcnn_config, is_training, add_summaries):
574
575
576
577
578
579
580
  """Builds a Faster R-CNN or R-FCN detection model based on the model config.

  Builds R-FCN model if the second_stage_box_predictor in the config is of type
  `rfcn_box_predictor` else builds a Faster R-CNN model.

  Args:
    frcnn_config: A faster_rcnn.proto object containing the config for the
581
      desired FasterRCNNMetaArch or RFCNMetaArch.
582
    is_training: True if this model is being built for training purposes.
583
    add_summaries: Whether to add tf summaries in the model.
584
585
586

  Returns:
    FasterRCNNMetaArch based on the config.
587

588
589
590
591
592
593
  Raises:
    ValueError: If frcnn_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = frcnn_config.num_classes
  image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)
594
595
  _check_feature_extractor_exists(frcnn_config.feature_extractor.type)
  is_keras = tf_version.is_tf2()
596

syiming's avatar
syiming committed
597
  if is_keras:
598
599
600
601
602
603
604
    feature_extractor = _build_faster_rcnn_keras_feature_extractor(
        frcnn_config.feature_extractor, is_training,
        inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
  else:
    feature_extractor = _build_faster_rcnn_feature_extractor(
        frcnn_config.feature_extractor, is_training,
        inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
605

606
  number_of_stages = frcnn_config.number_of_stages
607
608
609
  first_stage_anchor_generator = anchor_generator_builder.build(
      frcnn_config.first_stage_anchor_generator)

610
611
612
613
  first_stage_target_assigner = target_assigner.create_target_assigner(
      'FasterRCNN',
      'proposal',
      use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
614
  first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
615
616
617
618
619
620
621
  if is_keras:
    first_stage_box_predictor_arg_scope_fn = (
        hyperparams_builder.KerasLayerHyperparams(
            frcnn_config.first_stage_box_predictor_conv_hyperparams))
  else:
    first_stage_box_predictor_arg_scope_fn = hyperparams_builder.build(
        frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training)
622
623
624
625
  first_stage_box_predictor_kernel_size = (
      frcnn_config.first_stage_box_predictor_kernel_size)
  first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
  first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
626
627
  use_static_shapes = frcnn_config.use_static_shapes and (
      frcnn_config.use_static_shapes_for_eval or is_training)
628
629
  first_stage_sampler = sampler.BalancedPositiveNegativeSampler(
      positive_fraction=frcnn_config.first_stage_positive_balance_fraction,
630
631
      is_static=(frcnn_config.use_static_balanced_label_sampler and
                 use_static_shapes))
632
  first_stage_max_proposals = frcnn_config.first_stage_max_proposals
633
634
635
636
637
638
639
640
641
642
643
644
645
  if (frcnn_config.first_stage_nms_iou_threshold < 0 or
      frcnn_config.first_stage_nms_iou_threshold > 1.0):
    raise ValueError('iou_threshold not in [0, 1.0].')
  if (is_training and frcnn_config.second_stage_batch_size >
      first_stage_max_proposals):
    raise ValueError('second_stage_batch_size should be no greater than '
                     'first_stage_max_proposals.')
  first_stage_non_max_suppression_fn = functools.partial(
      post_processing.batch_multiclass_non_max_suppression,
      score_thresh=frcnn_config.first_stage_nms_score_threshold,
      iou_thresh=frcnn_config.first_stage_nms_iou_threshold,
      max_size_per_class=frcnn_config.first_stage_max_proposals,
      max_total_size=frcnn_config.first_stage_max_proposals,
Pooya Davoodi's avatar
Pooya Davoodi committed
646
      use_static_shapes=use_static_shapes,
647
      use_partitioned_nms=frcnn_config.use_partitioned_nms_in_first_stage,
Pooya Davoodi's avatar
Pooya Davoodi committed
648
      use_combined_nms=frcnn_config.use_combined_nms_in_first_stage)
649
650
651
652
653
654
655
656
  first_stage_loc_loss_weight = (
      frcnn_config.first_stage_localization_loss_weight)
  first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight

  initial_crop_size = frcnn_config.initial_crop_size
  maxpool_kernel_size = frcnn_config.maxpool_kernel_size
  maxpool_stride = frcnn_config.maxpool_stride

657
658
659
660
  second_stage_target_assigner = target_assigner.create_target_assigner(
      'FasterRCNN',
      'detection',
      use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
  if is_keras:
    second_stage_box_predictor = box_predictor_builder.build_keras(
        hyperparams_builder.KerasLayerHyperparams,
        freeze_batchnorm=False,
        inplace_batchnorm_update=False,
        num_predictions_per_location_list=[1],
        box_predictor_config=frcnn_config.second_stage_box_predictor,
        is_training=is_training,
        num_classes=num_classes)
  else:
    second_stage_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build,
        frcnn_config.second_stage_box_predictor,
        is_training=is_training,
        num_classes=num_classes)
676
  second_stage_batch_size = frcnn_config.second_stage_batch_size
677
678
  second_stage_sampler = sampler.BalancedPositiveNegativeSampler(
      positive_fraction=frcnn_config.second_stage_balance_fraction,
679
680
      is_static=(frcnn_config.use_static_balanced_label_sampler and
                 use_static_shapes))
681
682
683
684
  (second_stage_non_max_suppression_fn, second_stage_score_conversion_fn
  ) = post_processing_builder.build(frcnn_config.second_stage_post_processing)
  second_stage_localization_loss_weight = (
      frcnn_config.second_stage_localization_loss_weight)
685
686
687
  second_stage_classification_loss = (
      losses_builder.build_faster_rcnn_classification_loss(
          frcnn_config.second_stage_classification_loss))
688
689
  second_stage_classification_loss_weight = (
      frcnn_config.second_stage_classification_loss_weight)
690
691
  second_stage_mask_prediction_loss_weight = (
      frcnn_config.second_stage_mask_prediction_loss_weight)
692
693
694
695
696
697
698
699

  hard_example_miner = None
  if frcnn_config.HasField('hard_example_miner'):
    hard_example_miner = losses_builder.build_hard_example_miner(
        frcnn_config.hard_example_miner,
        second_stage_classification_loss_weight,
        second_stage_localization_loss_weight)

700
  crop_and_resize_fn = (
701
702
703
      spatial_ops.multilevel_matmul_crop_and_resize
      if frcnn_config.use_matmul_crop_and_resize
      else spatial_ops.multilevel_native_crop_and_resize)
704
705
  clip_anchors_to_image = (
      frcnn_config.clip_anchors_to_image)
706

707
  common_kwargs = {
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
      'is_training':
          is_training,
      'num_classes':
          num_classes,
      'image_resizer_fn':
          image_resizer_fn,
      'feature_extractor':
          feature_extractor,
      'number_of_stages':
          number_of_stages,
      'first_stage_anchor_generator':
          first_stage_anchor_generator,
      'first_stage_target_assigner':
          first_stage_target_assigner,
      'first_stage_atrous_rate':
          first_stage_atrous_rate,
724
      'first_stage_box_predictor_arg_scope_fn':
725
          first_stage_box_predictor_arg_scope_fn,
726
      'first_stage_box_predictor_kernel_size':
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
          first_stage_box_predictor_kernel_size,
      'first_stage_box_predictor_depth':
          first_stage_box_predictor_depth,
      'first_stage_minibatch_size':
          first_stage_minibatch_size,
      'first_stage_sampler':
          first_stage_sampler,
      'first_stage_non_max_suppression_fn':
          first_stage_non_max_suppression_fn,
      'first_stage_max_proposals':
          first_stage_max_proposals,
      'first_stage_localization_loss_weight':
          first_stage_loc_loss_weight,
      'first_stage_objectness_loss_weight':
          first_stage_obj_loss_weight,
      'second_stage_target_assigner':
          second_stage_target_assigner,
      'second_stage_batch_size':
          second_stage_batch_size,
      'second_stage_sampler':
          second_stage_sampler,
748
      'second_stage_non_max_suppression_fn':
749
750
751
          second_stage_non_max_suppression_fn,
      'second_stage_score_conversion_fn':
          second_stage_score_conversion_fn,
752
      'second_stage_localization_loss_weight':
753
          second_stage_localization_loss_weight,
754
      'second_stage_classification_loss':
755
          second_stage_classification_loss,
756
      'second_stage_classification_loss_weight':
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
          second_stage_classification_loss_weight,
      'hard_example_miner':
          hard_example_miner,
      'add_summaries':
          add_summaries,
      'crop_and_resize_fn':
          crop_and_resize_fn,
      'clip_anchors_to_image':
          clip_anchors_to_image,
      'use_static_shapes':
          use_static_shapes,
      'resize_masks':
          frcnn_config.resize_masks,
      'return_raw_detections_during_predict':
          frcnn_config.return_raw_detections_during_predict,
      'output_final_box_features':
773
774
775
          frcnn_config.output_final_box_features,
      'output_final_box_rpn_features':
          frcnn_config.output_final_box_rpn_features,
776
  }
777

778
779
780
781
782
  if ((not is_keras and isinstance(second_stage_box_predictor,
                                   rfcn_box_predictor.RfcnBoxPredictor)) or
      (is_keras and
       isinstance(second_stage_box_predictor,
                  rfcn_keras_box_predictor.RfcnKerasBoxPredictor))):
783
784
785
    return rfcn_meta_arch.RFCNMetaArch(
        second_stage_rfcn_box_predictor=second_stage_box_predictor,
        **common_kwargs)
786
787
788
789
790
791
  elif frcnn_config.HasField('context_config'):
    context_config = frcnn_config.context_config
    common_kwargs.update({
        'attention_bottleneck_dimension':
            context_config.attention_bottleneck_dimension,
        'attention_temperature':
792
793
794
795
796
797
798
799
800
801
802
803
804
            context_config.attention_temperature,
        'use_self_attention':
            context_config.use_self_attention,
        'use_long_term_attention':
            context_config.use_long_term_attention,
        'self_attention_in_sequence':
            context_config.self_attention_in_sequence,
        'num_attention_heads':
            context_config.num_attention_heads,
        'num_attention_layers':
            context_config.num_attention_layers,
        'attention_position':
            context_config.attention_position
805
806
807
808
809
810
811
812
813
    })
    return context_rcnn_meta_arch.ContextRCNNMetaArch(
        initial_crop_size=initial_crop_size,
        maxpool_kernel_size=maxpool_kernel_size,
        maxpool_stride=maxpool_stride,
        second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
        second_stage_mask_prediction_loss_weight=(
            second_stage_mask_prediction_loss_weight),
        **common_kwargs)
814
815
816
817
818
819
  else:
    return faster_rcnn_meta_arch.FasterRCNNMetaArch(
        initial_crop_size=initial_crop_size,
        maxpool_kernel_size=maxpool_kernel_size,
        maxpool_stride=maxpool_stride,
        second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
820
821
        second_stage_mask_prediction_loss_weight=(
            second_stage_mask_prediction_loss_weight),
822
        **common_kwargs)
823
824
825
826
827
828
829
830
831

EXPERIMENTAL_META_ARCH_BUILDER_MAP = {
}


def _build_experimental_model(config, is_training, add_summaries=True):
  return EXPERIMENTAL_META_ARCH_BUILDER_MAP[config.name](
      is_training, add_summaries)

832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

# The class ID in the groundtruth/model architecture is usually 0-based while
# the ID in the label map is 1-based. The offset is used to convert between the
# the two.
CLASS_ID_OFFSET = 1
KEYPOINT_STD_DEV_DEFAULT = 1.0


def keypoint_proto_to_params(kp_config, keypoint_map_dict):
  """Converts CenterNet.KeypointEstimation proto to parameter namedtuple."""
  label_map_item = keypoint_map_dict[kp_config.keypoint_class_name]

  classification_loss, localization_loss, _, _, _, _, _ = (
      losses_builder.build(kp_config.loss))

  keypoint_indices = [
      keypoint.id for keypoint in label_map_item.keypoints
  ]
  keypoint_labels = [
      keypoint.label for keypoint in label_map_item.keypoints
  ]
  keypoint_std_dev_dict = {
      label: KEYPOINT_STD_DEV_DEFAULT for label in keypoint_labels
  }
  if kp_config.keypoint_label_to_std:
    for label, value in kp_config.keypoint_label_to_std.items():
      keypoint_std_dev_dict[label] = value
  keypoint_std_dev = [keypoint_std_dev_dict[label] for label in keypoint_labels]
  return center_net_meta_arch.KeypointEstimationParams(
      task_name=kp_config.task_name,
      class_id=label_map_item.id - CLASS_ID_OFFSET,
      keypoint_indices=keypoint_indices,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      keypoint_labels=keypoint_labels,
      keypoint_std_dev=keypoint_std_dev,
      task_loss_weight=kp_config.task_loss_weight,
      keypoint_regression_loss_weight=kp_config.keypoint_regression_loss_weight,
      keypoint_heatmap_loss_weight=kp_config.keypoint_heatmap_loss_weight,
      keypoint_offset_loss_weight=kp_config.keypoint_offset_loss_weight,
      heatmap_bias_init=kp_config.heatmap_bias_init,
      keypoint_candidate_score_threshold=(
          kp_config.keypoint_candidate_score_threshold),
      num_candidates_per_keypoint=kp_config.num_candidates_per_keypoint,
      peak_max_pool_kernel_size=kp_config.peak_max_pool_kernel_size,
      unmatched_keypoint_score=kp_config.unmatched_keypoint_score,
      box_scale=kp_config.box_scale,
      candidate_search_scale=kp_config.candidate_search_scale,
880
881
      candidate_ranking_mode=kp_config.candidate_ranking_mode,
      offset_peak_radius=kp_config.offset_peak_radius,
882
883
884
      per_keypoint_offset=kp_config.per_keypoint_offset,
      predict_depth=kp_config.predict_depth,
      per_keypoint_depth=kp_config.per_keypoint_depth,
885
886
887
888
      keypoint_depth_loss_weight=kp_config.keypoint_depth_loss_weight,
      score_distance_offset=kp_config.score_distance_offset,
      clip_out_of_frame_keypoints=kp_config.clip_out_of_frame_keypoints,
      rescore_instances=kp_config.rescore_instances)
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917


def object_detection_proto_to_params(od_config):
  """Converts CenterNet.ObjectDetection proto to parameter namedtuple."""
  loss = losses_pb2.Loss()
  # Add dummy classification loss to avoid the loss_builder throwing error.
  # TODO(yuhuic): update the loss builder to take the classification loss
  # directly.
  loss.classification_loss.weighted_sigmoid.CopyFrom(
      losses_pb2.WeightedSigmoidClassificationLoss())
  loss.localization_loss.CopyFrom(od_config.localization_loss)
  _, localization_loss, _, _, _, _, _ = (losses_builder.build(loss))
  return center_net_meta_arch.ObjectDetectionParams(
      localization_loss=localization_loss,
      scale_loss_weight=od_config.scale_loss_weight,
      offset_loss_weight=od_config.offset_loss_weight,
      task_loss_weight=od_config.task_loss_weight)


def object_center_proto_to_params(oc_config):
  """Converts CenterNet.ObjectCenter proto to parameter namedtuple."""
  loss = losses_pb2.Loss()
  # Add dummy localization loss to avoid the loss_builder throwing error.
  # TODO(yuhuic): update the loss builder to take the localization loss
  # directly.
  loss.localization_loss.weighted_l2.CopyFrom(
      losses_pb2.WeightedL2LocalizationLoss())
  loss.classification_loss.CopyFrom(oc_config.classification_loss)
  classification_loss, _, _, _, _, _, _ = (losses_builder.build(loss))
918
919
920
  keypoint_weights_for_center = []
  if oc_config.keypoint_weights_for_center:
    keypoint_weights_for_center = list(oc_config.keypoint_weights_for_center)
921
922
923
924
925
  return center_net_meta_arch.ObjectCenterParams(
      classification_loss=classification_loss,
      object_center_loss_weight=oc_config.object_center_loss_weight,
      heatmap_bias_init=oc_config.heatmap_bias_init,
      min_box_overlap_iou=oc_config.min_box_overlap_iou,
926
      max_box_predictions=oc_config.max_box_predictions,
927
928
      use_labeled_classes=oc_config.use_labeled_classes,
      keypoint_weights_for_center=keypoint_weights_for_center)
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945


def mask_proto_to_params(mask_config):
  """Converts CenterNet.MaskEstimation proto to parameter namedtuple."""
  loss = losses_pb2.Loss()
  # Add dummy localization loss to avoid the loss_builder throwing error.
  loss.localization_loss.weighted_l2.CopyFrom(
      losses_pb2.WeightedL2LocalizationLoss())
  loss.classification_loss.CopyFrom(mask_config.classification_loss)
  classification_loss, _, _, _, _, _, _ = (losses_builder.build(loss))
  return center_net_meta_arch.MaskParams(
      classification_loss=classification_loss,
      task_loss_weight=mask_config.task_loss_weight,
      mask_height=mask_config.mask_height,
      mask_width=mask_config.mask_width,
      score_threshold=mask_config.score_threshold,
      heatmap_bias_init=mask_config.heatmap_bias_init)
946
947


948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
def densepose_proto_to_params(densepose_config):
  """Converts CenterNet.DensePoseEstimation proto to parameter namedtuple."""
  classification_loss, localization_loss, _, _, _, _, _ = (
      losses_builder.build(densepose_config.loss))
  return center_net_meta_arch.DensePoseParams(
      class_id=densepose_config.class_id,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      part_loss_weight=densepose_config.part_loss_weight,
      coordinate_loss_weight=densepose_config.coordinate_loss_weight,
      num_parts=densepose_config.num_parts,
      task_loss_weight=densepose_config.task_loss_weight,
      upsample_to_input_res=densepose_config.upsample_to_input_res,
      heatmap_bias_init=densepose_config.heatmap_bias_init)


964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
def tracking_proto_to_params(tracking_config):
  """Converts CenterNet.TrackEstimation proto to parameter namedtuple."""
  loss = losses_pb2.Loss()
  # Add dummy localization loss to avoid the loss_builder throwing error.
  # TODO(yuhuic): update the loss builder to take the localization loss
  # directly.
  loss.localization_loss.weighted_l2.CopyFrom(
      losses_pb2.WeightedL2LocalizationLoss())
  loss.classification_loss.CopyFrom(tracking_config.classification_loss)
  classification_loss, _, _, _, _, _, _ = losses_builder.build(loss)
  return center_net_meta_arch.TrackParams(
      num_track_ids=tracking_config.num_track_ids,
      reid_embed_size=tracking_config.reid_embed_size,
      classification_loss=classification_loss,
      num_fc_layers=tracking_config.num_fc_layers,
      task_loss_weight=tracking_config.task_loss_weight)


982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
def temporal_offset_proto_to_params(temporal_offset_config):
  """Converts CenterNet.TemporalOffsetEstimation proto to param-tuple."""
  loss = losses_pb2.Loss()
  # Add dummy classification loss to avoid the loss_builder throwing error.
  # TODO(yuhuic): update the loss builder to take the classification loss
  # directly.
  loss.classification_loss.weighted_sigmoid.CopyFrom(
      losses_pb2.WeightedSigmoidClassificationLoss())
  loss.localization_loss.CopyFrom(temporal_offset_config.localization_loss)
  _, localization_loss, _, _, _, _, _ = losses_builder.build(loss)
  return center_net_meta_arch.TemporalOffsetParams(
      localization_loss=localization_loss,
      task_loss_weight=temporal_offset_config.task_loss_weight)


997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
def _build_center_net_model(center_net_config, is_training, add_summaries):
  """Build a CenterNet detection model.

  Args:
    center_net_config: A CenterNet proto object with model configuration.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tf summaries in the model.

  Returns:
    CenterNetMetaArch based on the config.

  """

  image_resizer_fn = image_resizer_builder.build(
      center_net_config.image_resizer)
  _check_feature_extractor_exists(center_net_config.feature_extractor.type)
  feature_extractor = _build_center_net_feature_extractor(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1014
      center_net_config.feature_extractor, is_training)
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
  object_center_params = object_center_proto_to_params(
      center_net_config.object_center_params)

  object_detection_params = None
  if center_net_config.HasField('object_detection_task'):
    object_detection_params = object_detection_proto_to_params(
        center_net_config.object_detection_task)

  keypoint_params_dict = None
  if center_net_config.keypoint_estimation_task:
    label_map_proto = label_map_util.load_labelmap(
        center_net_config.keypoint_label_map_path)
    keypoint_map_dict = {
        item.name: item for item in label_map_proto.item if item.keypoints
    }
    keypoint_params_dict = {}
    keypoint_class_id_set = set()
    all_keypoint_indices = []
    for task in center_net_config.keypoint_estimation_task:
      kp_params = keypoint_proto_to_params(task, keypoint_map_dict)
      keypoint_params_dict[task.task_name] = kp_params
      all_keypoint_indices.extend(kp_params.keypoint_indices)
      if kp_params.class_id in keypoint_class_id_set:
        raise ValueError(('Multiple keypoint tasks map to the same class id is '
                          'not allowed: %d' % kp_params.class_id))
      else:
        keypoint_class_id_set.add(kp_params.class_id)
    if len(all_keypoint_indices) > len(set(all_keypoint_indices)):
      raise ValueError('Some keypoint indices are used more than once.')
1044
1045
1046
1047
1048

  mask_params = None
  if center_net_config.HasField('mask_estimation_task'):
    mask_params = mask_proto_to_params(center_net_config.mask_estimation_task)

1049
1050
1051
1052
1053
  densepose_params = None
  if center_net_config.HasField('densepose_estimation_task'):
    densepose_params = densepose_proto_to_params(
        center_net_config.densepose_estimation_task)

1054
1055
1056
1057
1058
  track_params = None
  if center_net_config.HasField('track_estimation_task'):
    track_params = tracking_proto_to_params(
        center_net_config.track_estimation_task)

1059
1060
1061
1062
  temporal_offset_params = None
  if center_net_config.HasField('temporal_offset_task'):
    temporal_offset_params = temporal_offset_proto_to_params(
        center_net_config.temporal_offset_task)
1063
1064
1065
1066
  non_max_suppression_fn = None
  if center_net_config.HasField('post_processing'):
    non_max_suppression_fn, _ = post_processing_builder.build(
        center_net_config.post_processing)
1067
1068
1069
1070
1071
1072
1073
1074
  return center_net_meta_arch.CenterNetMetaArch(
      is_training=is_training,
      add_summaries=add_summaries,
      num_classes=center_net_config.num_classes,
      feature_extractor=feature_extractor,
      image_resizer_fn=image_resizer_fn,
      object_center_params=object_center_params,
      object_detection_params=object_detection_params,
1075
      keypoint_params_dict=keypoint_params_dict,
1076
      mask_params=mask_params,
1077
      densepose_params=densepose_params,
1078
      track_params=track_params,
1079
      temporal_offset_params=temporal_offset_params,
1080
      use_depthwise=center_net_config.use_depthwise,
1081
1082
      compute_heatmap_sparse=center_net_config.compute_heatmap_sparse,
      non_max_suppression_fn=non_max_suppression_fn)
1083
1084


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1085
def _build_center_net_feature_extractor(feature_extractor_config, is_training):
1086
1087
1088
1089
1090
  """Build a CenterNet feature extractor from the given config."""

  if feature_extractor_config.type not in CENTER_NET_EXTRACTOR_FUNCTION_MAP:
    raise ValueError('\'{}\' is not a known CenterNet feature extractor type'
                     .format(feature_extractor_config.type))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1091
1092
1093
1094
1095
1096
  kwargs = {
      'channel_means': list(feature_extractor_config.channel_means),
      'channel_stds': list(feature_extractor_config.channel_stds),
      'bgr_ordering': feature_extractor_config.bgr_ordering,
  }

1097
1098

  return CENTER_NET_EXTRACTOR_FUNCTION_MAP[feature_extractor_config.type](
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1099
      **kwargs)
1100
1101
1102


META_ARCH_BUILDER_MAP = {
1103
1104
    'ssd': _build_ssd_model,
    'faster_rcnn': _build_faster_rcnn_model,
1105
1106
    'experimental_model': _build_experimental_model,
    'center_net': _build_center_net_model
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
}


def build(model_config, is_training, add_summaries=True):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tensorflow summaries in the model graph.
  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')

  meta_architecture = model_config.WhichOneof('model')

1129
  if meta_architecture not in META_ARCH_BUILDER_MAP:
1130
1131
    raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
  else:
1132
    build_func = META_ARCH_BUILDER_MAP[meta_architecture]
1133
1134
    return build_func(getattr(model_config, meta_architecture), is_training,
                      add_summaries)