model_builder.py 44 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A function to build a DetectionModel from configuration."""
17

18
import functools
19
import sys
20
21
22
23
24
25
26
27
28
from object_detection.builders import anchor_generator_builder
from object_detection.builders import box_coder_builder
from object_detection.builders import box_predictor_builder
from object_detection.builders import hyperparams_builder
from object_detection.builders import image_resizer_builder
from object_detection.builders import losses_builder
from object_detection.builders import matcher_builder
from object_detection.builders import post_processing_builder
from object_detection.builders import region_similarity_calculator_builder as sim_calc
29
from object_detection.core import balanced_positive_negative_sampler as sampler
30
from object_detection.core import post_processing
31
from object_detection.core import target_assigner
32
33
from object_detection.meta_architectures import center_net_meta_arch
from object_detection.meta_architectures import context_rcnn_meta_arch
34
35
36
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.meta_architectures import rfcn_meta_arch
from object_detection.meta_architectures import ssd_meta_arch
37
from object_detection.predictors.heads import mask_head
38
from object_detection.protos import losses_pb2
39
from object_detection.protos import model_pb2
40
from object_detection.utils import label_map_util
41
from object_detection.utils import ops
42
43
44
45
46
47
48
49
50
51
from object_detection.utils import tf_version

## Feature Extractors for TF
## This section conditionally imports different feature extractors based on the
## Tensorflow version.
##
# pylint: disable=g-import-not-at-top
if tf_version.is_tf2():
  from object_detection.models import center_net_hourglass_feature_extractor
  from object_detection.models import center_net_resnet_feature_extractor
52
  from object_detection.models import center_net_resnet_v1_fpn_feature_extractor
53
54
55
  from object_detection.models import faster_rcnn_inception_resnet_v2_keras_feature_extractor as frcnn_inc_res_keras
  from object_detection.models import faster_rcnn_resnet_keras_feature_extractor as frcnn_resnet_keras
  from object_detection.models import ssd_resnet_v1_fpn_keras_feature_extractor as ssd_resnet_v1_fpn_keras
56
  from object_detection.models import faster_rcnn_resnet_v1_fpn_keras_feature_extractor as frcnn_resnet_fpn_keras
57
58
59
60
61
  from object_detection.models.ssd_mobilenet_v1_fpn_keras_feature_extractor import SSDMobileNetV1FpnKerasFeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_keras_feature_extractor import SSDMobileNetV1KerasFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_fpn_keras_feature_extractor import SSDMobileNetV2FpnKerasFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_keras_feature_extractor import SSDMobileNetV2KerasFeatureExtractor
  from object_detection.predictors import rfcn_keras_box_predictor
62
63
  if sys.version_info[0] >= 3:
    from object_detection.models import ssd_efficientnet_bifpn_feature_extractor as ssd_efficientnet_bifpn
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

if tf_version.is_tf1():
  from object_detection.models import faster_rcnn_inception_resnet_v2_feature_extractor as frcnn_inc_res
  from object_detection.models import faster_rcnn_inception_v2_feature_extractor as frcnn_inc_v2
  from object_detection.models import faster_rcnn_nas_feature_extractor as frcnn_nas
  from object_detection.models import faster_rcnn_pnas_feature_extractor as frcnn_pnas
  from object_detection.models import faster_rcnn_resnet_v1_feature_extractor as frcnn_resnet_v1
  from object_detection.models import ssd_resnet_v1_fpn_feature_extractor as ssd_resnet_v1_fpn
  from object_detection.models import ssd_resnet_v1_ppn_feature_extractor as ssd_resnet_v1_ppn
  from object_detection.models.embedded_ssd_mobilenet_v1_feature_extractor import EmbeddedSSDMobileNetV1FeatureExtractor
  from object_detection.models.ssd_inception_v2_feature_extractor import SSDInceptionV2FeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_fpn_feature_extractor import SSDMobileNetV2FpnFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_mnasfpn_feature_extractor import SSDMobileNetV2MnasFPNFeatureExtractor
  from object_detection.models.ssd_inception_v3_feature_extractor import SSDInceptionV3FeatureExtractor
  from object_detection.models.ssd_mobilenet_edgetpu_feature_extractor import SSDMobileNetEdgeTPUFeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_fpn_feature_extractor import SSDMobileNetV1FpnFeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_ppn_feature_extractor import SSDMobileNetV1PpnFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_feature_extractor import SSDMobileNetV2FeatureExtractor
  from object_detection.models.ssd_mobilenet_v3_feature_extractor import SSDMobileNetV3LargeFeatureExtractor
  from object_detection.models.ssd_mobilenet_v3_feature_extractor import SSDMobileNetV3SmallFeatureExtractor
85
86
87
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetCPUFeatureExtractor
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetDSPFeatureExtractor
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetEdgeTPUFeatureExtractor
88
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetGPUFeatureExtractor
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
  from object_detection.models.ssd_pnasnet_feature_extractor import SSDPNASNetFeatureExtractor
  from object_detection.predictors import rfcn_box_predictor
# pylint: enable=g-import-not-at-top

if tf_version.is_tf2():
  SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = {
      'ssd_mobilenet_v1_keras': SSDMobileNetV1KerasFeatureExtractor,
      'ssd_mobilenet_v1_fpn_keras': SSDMobileNetV1FpnKerasFeatureExtractor,
      'ssd_mobilenet_v2_keras': SSDMobileNetV2KerasFeatureExtractor,
      'ssd_mobilenet_v2_fpn_keras': SSDMobileNetV2FpnKerasFeatureExtractor,
      'ssd_resnet50_v1_fpn_keras':
          ssd_resnet_v1_fpn_keras.SSDResNet50V1FpnKerasFeatureExtractor,
      'ssd_resnet101_v1_fpn_keras':
          ssd_resnet_v1_fpn_keras.SSDResNet101V1FpnKerasFeatureExtractor,
      'ssd_resnet152_v1_fpn_keras':
          ssd_resnet_v1_fpn_keras.SSDResNet152V1FpnKerasFeatureExtractor,
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
      'ssd_efficientnet-b0_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB0BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b1_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB1BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b2_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB2BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b3_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB3BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b4_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB4BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b5_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB5BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b6_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB6BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b7_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB7BiFPNKerasFeatureExtractor,
121
  }
122

123
124
125
126
127
128
129
130
131
  FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = {
      'faster_rcnn_resnet50_keras':
          frcnn_resnet_keras.FasterRCNNResnet50KerasFeatureExtractor,
      'faster_rcnn_resnet101_keras':
          frcnn_resnet_keras.FasterRCNNResnet101KerasFeatureExtractor,
      'faster_rcnn_resnet152_keras':
          frcnn_resnet_keras.FasterRCNNResnet152KerasFeatureExtractor,
      'faster_rcnn_inception_resnet_v2_keras':
      frcnn_inc_res_keras.FasterRCNNInceptionResnetV2KerasFeatureExtractor,
132
      'faster_rcnn_resnet50_fpn_keras':
133
          frcnn_resnet_fpn_keras.FasterRCNNResnet50FpnKerasFeatureExtractor,
134
      'faster_rcnn_resnet101_fpn_keras':
135
          frcnn_resnet_fpn_keras.FasterRCNNResnet101FpnKerasFeatureExtractor,
136
      'faster_rcnn_resnet152_fpn_keras':
137
          frcnn_resnet_fpn_keras.FasterRCNNResnet152FpnKerasFeatureExtractor,
138
  }
139

140
141
  CENTER_NET_EXTRACTOR_FUNCTION_MAP = {
      'resnet_v2_50': center_net_resnet_feature_extractor.resnet_v2_50,
142
      'resnet_v2_101': center_net_resnet_feature_extractor.resnet_v2_101,
Yu-hui Chen's avatar
Yu-hui Chen committed
143
144
145
146
      'resnet_v1_18_fpn':
          center_net_resnet_v1_fpn_feature_extractor.resnet_v1_18_fpn,
      'resnet_v1_34_fpn':
          center_net_resnet_v1_fpn_feature_extractor.resnet_v1_34_fpn,
147
148
149
150
      'resnet_v1_50_fpn':
          center_net_resnet_v1_fpn_feature_extractor.resnet_v1_50_fpn,
      'resnet_v1_101_fpn':
          center_net_resnet_v1_fpn_feature_extractor.resnet_v1_101_fpn,
151
152
      'hourglass_104': center_net_hourglass_feature_extractor.hourglass_104,
  }
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
  FEATURE_EXTRACTOR_MAPS = [
      CENTER_NET_EXTRACTOR_FUNCTION_MAP,
      FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP,
      SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP
  ]

if tf_version.is_tf1():
  SSD_FEATURE_EXTRACTOR_CLASS_MAP = {
      'ssd_inception_v2':
          SSDInceptionV2FeatureExtractor,
      'ssd_inception_v3':
          SSDInceptionV3FeatureExtractor,
      'ssd_mobilenet_v1':
          SSDMobileNetV1FeatureExtractor,
      'ssd_mobilenet_v1_fpn':
          SSDMobileNetV1FpnFeatureExtractor,
      'ssd_mobilenet_v1_ppn':
          SSDMobileNetV1PpnFeatureExtractor,
      'ssd_mobilenet_v2':
          SSDMobileNetV2FeatureExtractor,
      'ssd_mobilenet_v2_fpn':
          SSDMobileNetV2FpnFeatureExtractor,
      'ssd_mobilenet_v2_mnasfpn':
          SSDMobileNetV2MnasFPNFeatureExtractor,
      'ssd_mobilenet_v3_large':
          SSDMobileNetV3LargeFeatureExtractor,
      'ssd_mobilenet_v3_small':
          SSDMobileNetV3SmallFeatureExtractor,
      'ssd_mobilenet_edgetpu':
          SSDMobileNetEdgeTPUFeatureExtractor,
      'ssd_resnet50_v1_fpn':
          ssd_resnet_v1_fpn.SSDResnet50V1FpnFeatureExtractor,
      'ssd_resnet101_v1_fpn':
          ssd_resnet_v1_fpn.SSDResnet101V1FpnFeatureExtractor,
      'ssd_resnet152_v1_fpn':
          ssd_resnet_v1_fpn.SSDResnet152V1FpnFeatureExtractor,
      'ssd_resnet50_v1_ppn':
          ssd_resnet_v1_ppn.SSDResnet50V1PpnFeatureExtractor,
      'ssd_resnet101_v1_ppn':
          ssd_resnet_v1_ppn.SSDResnet101V1PpnFeatureExtractor,
      'ssd_resnet152_v1_ppn':
          ssd_resnet_v1_ppn.SSDResnet152V1PpnFeatureExtractor,
      'embedded_ssd_mobilenet_v1':
          EmbeddedSSDMobileNetV1FeatureExtractor,
      'ssd_pnasnet':
          SSDPNASNetFeatureExtractor,
200
201
202
203
204
205
206
207
      'ssd_mobiledet_cpu':
          SSDMobileDetCPUFeatureExtractor,
      'ssd_mobiledet_dsp':
          SSDMobileDetDSPFeatureExtractor,
      'ssd_mobiledet_edgetpu':
          SSDMobileDetEdgeTPUFeatureExtractor,
      'ssd_mobiledet_gpu':
          SSDMobileDetGPUFeatureExtractor,
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
  }

  FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP = {
      'faster_rcnn_nas':
      frcnn_nas.FasterRCNNNASFeatureExtractor,
      'faster_rcnn_pnas':
      frcnn_pnas.FasterRCNNPNASFeatureExtractor,
      'faster_rcnn_inception_resnet_v2':
      frcnn_inc_res.FasterRCNNInceptionResnetV2FeatureExtractor,
      'faster_rcnn_inception_v2':
      frcnn_inc_v2.FasterRCNNInceptionV2FeatureExtractor,
      'faster_rcnn_resnet50':
      frcnn_resnet_v1.FasterRCNNResnet50FeatureExtractor,
      'faster_rcnn_resnet101':
      frcnn_resnet_v1.FasterRCNNResnet101FeatureExtractor,
      'faster_rcnn_resnet152':
      frcnn_resnet_v1.FasterRCNNResnet152FeatureExtractor,
  }

  FEATURE_EXTRACTOR_MAPS = [
      SSD_FEATURE_EXTRACTOR_CLASS_MAP,
      FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP
  ]
231

232
233
234
235
236
237
238

def _check_feature_extractor_exists(feature_extractor_type):
  feature_extractors = set().union(*FEATURE_EXTRACTOR_MAPS)
  if feature_extractor_type not in feature_extractors:
    raise ValueError('{} is not supported. See `model_builder.py` for features '
                     'extractors compatible with different versions of '
                     'Tensorflow'.format(feature_extractor_type))
239

240

241
242
243
def _build_ssd_feature_extractor(feature_extractor_config,
                                 is_training,
                                 freeze_batchnorm,
244
                                 reuse_weights=None):
245
246
247
248
249
  """Builds a ssd_meta_arch.SSDFeatureExtractor based on config.

  Args:
    feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
    is_training: True if this feature extractor is being built for training.
250
251
252
253
    freeze_batchnorm: Whether to freeze batch norm parameters during
      training or not. When training with a small batch size (e.g. 1), it is
      desirable to freeze batch norm update and use pretrained batch norm
      params.
254
255
256
257
258
259
260
261
262
263
264
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    ssd_meta_arch.SSDFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  depth_multiplier = feature_extractor_config.depth_multiplier
  min_depth = feature_extractor_config.min_depth
265
  pad_to_multiple = feature_extractor_config.pad_to_multiple
266
  use_explicit_padding = feature_extractor_config.use_explicit_padding
267
  use_depthwise = feature_extractor_config.use_depthwise
268

269
270
  is_keras = tf_version.is_tf2()
  if is_keras:
271
272
273
274
275
    conv_hyperparams = hyperparams_builder.KerasLayerHyperparams(
        feature_extractor_config.conv_hyperparams)
  else:
    conv_hyperparams = hyperparams_builder.build(
        feature_extractor_config.conv_hyperparams, is_training)
276
277
  override_base_feature_extractor_hyperparams = (
      feature_extractor_config.override_base_feature_extractor_hyperparams)
278

279
  if not is_keras and feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
280
281
    raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))

282
  if is_keras:
283
284
285
286
    feature_extractor_class = SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[
        feature_type]
  else:
    feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
  kwargs = {
      'is_training':
          is_training,
      'depth_multiplier':
          depth_multiplier,
      'min_depth':
          min_depth,
      'pad_to_multiple':
          pad_to_multiple,
      'use_explicit_padding':
          use_explicit_padding,
      'use_depthwise':
          use_depthwise,
      'override_base_feature_extractor_hyperparams':
          override_base_feature_extractor_hyperparams
  }

304
305
306
307
308
309
  if feature_extractor_config.HasField('replace_preprocessor_with_placeholder'):
    kwargs.update({
        'replace_preprocessor_with_placeholder':
            feature_extractor_config.replace_preprocessor_with_placeholder
    })

pkulzc's avatar
pkulzc committed
310
311
312
  if feature_extractor_config.HasField('num_layers'):
    kwargs.update({'num_layers': feature_extractor_config.num_layers})

313
  if is_keras:
314
315
316
317
318
319
320
321
322
323
324
    kwargs.update({
        'conv_hyperparams': conv_hyperparams,
        'inplace_batchnorm_update': False,
        'freeze_batchnorm': freeze_batchnorm
    })
  else:
    kwargs.update({
        'conv_hyperparams_fn': conv_hyperparams,
        'reuse_weights': reuse_weights,
    })

325

326
327
  if feature_extractor_config.HasField('fpn'):
    kwargs.update({
328
329
330
331
332
333
        'fpn_min_level':
            feature_extractor_config.fpn.min_level,
        'fpn_max_level':
            feature_extractor_config.fpn.max_level,
        'additional_layer_depth':
            feature_extractor_config.fpn.additional_layer_depth,
334
335
    })

336
337
338
339
340
341
342
343
  if feature_extractor_config.HasField('bifpn'):
    kwargs.update({
        'bifpn_min_level': feature_extractor_config.bifpn.min_level,
        'bifpn_max_level': feature_extractor_config.bifpn.max_level,
        'bifpn_num_iterations': feature_extractor_config.bifpn.num_iterations,
        'bifpn_num_filters': feature_extractor_config.bifpn.num_filters,
        'bifpn_combine_method': feature_extractor_config.bifpn.combine_method,
    })
344

345
  return feature_extractor_class(**kwargs)
346
347


348
def _build_ssd_model(ssd_config, is_training, add_summaries):
349
350
351
352
353
354
  """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.
355
    add_summaries: Whether to add tf summaries in the model.
356
357
  Returns:
    SSDMetaArch based on the config.
358

359
360
361
362
363
  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = ssd_config.num_classes
364
  _check_feature_extractor_exists(ssd_config.feature_extractor.type)
365
366

  # Feature extractor
367
  feature_extractor = _build_ssd_feature_extractor(
368
      feature_extractor_config=ssd_config.feature_extractor,
369
      freeze_batchnorm=ssd_config.freeze_batchnorm,
370
      is_training=is_training)
371
372
373
374
375

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)
376
  encode_background_as_zeros = ssd_config.encode_background_as_zeros
377
  negative_class_weight = ssd_config.negative_class_weight
378
379
  anchor_generator = anchor_generator_builder.build(
      ssd_config.anchor_generator)
380
381
  if feature_extractor.is_keras_model:
    ssd_box_predictor = box_predictor_builder.build_keras(
382
        hyperparams_fn=hyperparams_builder.KerasLayerHyperparams,
383
384
385
386
387
388
389
390
391
392
393
394
        freeze_batchnorm=ssd_config.freeze_batchnorm,
        inplace_batchnorm_update=False,
        num_predictions_per_location_list=anchor_generator
        .num_anchors_per_location(),
        box_predictor_config=ssd_config.box_predictor,
        is_training=is_training,
        num_classes=num_classes,
        add_background_class=ssd_config.add_background_class)
  else:
    ssd_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build, ssd_config.box_predictor, is_training,
        num_classes, ssd_config.add_background_class)
395
396
397
398
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
399
400
   localization_weight, hard_example_miner, random_example_sampler,
   expected_loss_weights_fn) = losses_builder.build(ssd_config.loss)
401
  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
402
  normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize
403
404
405
406

  equalization_loss_config = ops.EqualizationLossConfig(
      weight=ssd_config.loss.equalization_loss.weight,
      exclude_prefixes=ssd_config.loss.equalization_loss.exclude_prefixes)
407
408
409
410
411

  target_assigner_instance = target_assigner.TargetAssigner(
      region_similarity_calculator,
      matcher,
      box_coder,
412
      negative_class_weight=negative_class_weight)
413

414
  ssd_meta_arch_fn = ssd_meta_arch.SSDMetaArch
415
  kwargs = {}
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

  return ssd_meta_arch_fn(
      is_training=is_training,
      anchor_generator=anchor_generator,
      box_predictor=ssd_box_predictor,
      box_coder=box_coder,
      feature_extractor=feature_extractor,
      encode_background_as_zeros=encode_background_as_zeros,
      image_resizer_fn=image_resizer_fn,
      non_max_suppression_fn=non_max_suppression_fn,
      score_conversion_fn=score_conversion_fn,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      classification_loss_weight=classification_weight,
      localization_loss_weight=localization_weight,
      normalize_loss_by_num_matches=normalize_loss_by_num_matches,
      hard_example_miner=hard_example_miner,
433
      target_assigner_instance=target_assigner_instance,
434
      add_summaries=add_summaries,
435
436
      normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
437
      inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
438
      add_background_class=ssd_config.add_background_class,
439
      explicit_background_class=ssd_config.explicit_background_class,
440
      random_example_sampler=random_example_sampler,
441
442
443
444
      expected_loss_weights_fn=expected_loss_weights_fn,
      use_confidences_as_targets=ssd_config.use_confidences_as_targets,
      implicit_example_weight=ssd_config.implicit_example_weight,
      equalization_loss_config=equalization_loss_config,
445
446
      return_raw_detections_during_predict=(
          ssd_config.return_raw_detections_during_predict),
447
      **kwargs)
448
449
450


def _build_faster_rcnn_feature_extractor(
451
    feature_extractor_config, is_training, reuse_weights=True,
452
    inplace_batchnorm_update=False):
453
454
455
456
457
458
459
  """Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.
460
461
462
463
464
    inplace_batchnorm_update: Whether to update batch_norm inplace during
      training. This is required for batch norm to work correctly on TPUs. When
      this is false, user must add a control dependency on
      tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
      norm moving average parameters.
465
466
467
468
469
470
471

  Returns:
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
472
473
  if inplace_batchnorm_update:
    raise ValueError('inplace batchnorm updates not supported.')
474
475
476
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
477
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable
478
479
480
481
482
483
484

  if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
  return feature_extractor_class(
485
      is_training, first_stage_features_stride,
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
      batch_norm_trainable, reuse_weights=reuse_weights)


def _build_faster_rcnn_keras_feature_extractor(
    feature_extractor_config, is_training,
    inplace_batchnorm_update=False):
  """Builds a faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor from config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    inplace_batchnorm_update: Whether to update batch_norm inplace during
      training. This is required for batch norm to work correctly on TPUs. When
      this is false, user must add a control dependency on
      tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
      norm moving average parameters.

  Returns:
    faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  if inplace_batchnorm_update:
    raise ValueError('inplace batchnorm updates not supported.')
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable

  if feature_type not in FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
  return feature_extractor_class(
      is_training, first_stage_features_stride,
      batch_norm_trainable)
525
526


527
def _build_faster_rcnn_model(frcnn_config, is_training, add_summaries):
528
529
530
531
532
533
534
  """Builds a Faster R-CNN or R-FCN detection model based on the model config.

  Builds R-FCN model if the second_stage_box_predictor in the config is of type
  `rfcn_box_predictor` else builds a Faster R-CNN model.

  Args:
    frcnn_config: A faster_rcnn.proto object containing the config for the
535
      desired FasterRCNNMetaArch or RFCNMetaArch.
536
    is_training: True if this model is being built for training purposes.
537
    add_summaries: Whether to add tf summaries in the model.
538
539
540

  Returns:
    FasterRCNNMetaArch based on the config.
541

542
543
544
545
546
547
  Raises:
    ValueError: If frcnn_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = frcnn_config.num_classes
  image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)
548
549
  _check_feature_extractor_exists(frcnn_config.feature_extractor.type)
  is_keras = tf_version.is_tf2()
550
551
552
553
554
555
556
557
558

  if is_keras:
    feature_extractor = _build_faster_rcnn_keras_feature_extractor(
        frcnn_config.feature_extractor, is_training,
        inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
  else:
    feature_extractor = _build_faster_rcnn_feature_extractor(
        frcnn_config.feature_extractor, is_training,
        inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
559

560
  number_of_stages = frcnn_config.number_of_stages
561
562
563
  first_stage_anchor_generator = anchor_generator_builder.build(
      frcnn_config.first_stage_anchor_generator)

564
565
566
567
  first_stage_target_assigner = target_assigner.create_target_assigner(
      'FasterRCNN',
      'proposal',
      use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
568
  first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
569
570
571
572
573
574
575
  if is_keras:
    first_stage_box_predictor_arg_scope_fn = (
        hyperparams_builder.KerasLayerHyperparams(
            frcnn_config.first_stage_box_predictor_conv_hyperparams))
  else:
    first_stage_box_predictor_arg_scope_fn = hyperparams_builder.build(
        frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training)
576
577
578
579
  first_stage_box_predictor_kernel_size = (
      frcnn_config.first_stage_box_predictor_kernel_size)
  first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
  first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
580
581
  use_static_shapes = frcnn_config.use_static_shapes and (
      frcnn_config.use_static_shapes_for_eval or is_training)
582
583
  first_stage_sampler = sampler.BalancedPositiveNegativeSampler(
      positive_fraction=frcnn_config.first_stage_positive_balance_fraction,
584
585
      is_static=(frcnn_config.use_static_balanced_label_sampler and
                 use_static_shapes))
586
  first_stage_max_proposals = frcnn_config.first_stage_max_proposals
587
588
589
590
591
592
593
594
595
596
597
598
599
  if (frcnn_config.first_stage_nms_iou_threshold < 0 or
      frcnn_config.first_stage_nms_iou_threshold > 1.0):
    raise ValueError('iou_threshold not in [0, 1.0].')
  if (is_training and frcnn_config.second_stage_batch_size >
      first_stage_max_proposals):
    raise ValueError('second_stage_batch_size should be no greater than '
                     'first_stage_max_proposals.')
  first_stage_non_max_suppression_fn = functools.partial(
      post_processing.batch_multiclass_non_max_suppression,
      score_thresh=frcnn_config.first_stage_nms_score_threshold,
      iou_thresh=frcnn_config.first_stage_nms_iou_threshold,
      max_size_per_class=frcnn_config.first_stage_max_proposals,
      max_total_size=frcnn_config.first_stage_max_proposals,
Pooya Davoodi's avatar
Pooya Davoodi committed
600
      use_static_shapes=use_static_shapes,
601
      use_partitioned_nms=frcnn_config.use_partitioned_nms_in_first_stage,
Pooya Davoodi's avatar
Pooya Davoodi committed
602
      use_combined_nms=frcnn_config.use_combined_nms_in_first_stage)
603
604
605
606
607
608
609
610
  first_stage_loc_loss_weight = (
      frcnn_config.first_stage_localization_loss_weight)
  first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight

  initial_crop_size = frcnn_config.initial_crop_size
  maxpool_kernel_size = frcnn_config.maxpool_kernel_size
  maxpool_stride = frcnn_config.maxpool_stride

611
612
613
614
  second_stage_target_assigner = target_assigner.create_target_assigner(
      'FasterRCNN',
      'detection',
      use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
  if is_keras:
    second_stage_box_predictor = box_predictor_builder.build_keras(
        hyperparams_builder.KerasLayerHyperparams,
        freeze_batchnorm=False,
        inplace_batchnorm_update=False,
        num_predictions_per_location_list=[1],
        box_predictor_config=frcnn_config.second_stage_box_predictor,
        is_training=is_training,
        num_classes=num_classes)
  else:
    second_stage_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build,
        frcnn_config.second_stage_box_predictor,
        is_training=is_training,
        num_classes=num_classes)
630
  second_stage_batch_size = frcnn_config.second_stage_batch_size
631
632
  second_stage_sampler = sampler.BalancedPositiveNegativeSampler(
      positive_fraction=frcnn_config.second_stage_balance_fraction,
633
634
      is_static=(frcnn_config.use_static_balanced_label_sampler and
                 use_static_shapes))
635
636
637
638
  (second_stage_non_max_suppression_fn, second_stage_score_conversion_fn
  ) = post_processing_builder.build(frcnn_config.second_stage_post_processing)
  second_stage_localization_loss_weight = (
      frcnn_config.second_stage_localization_loss_weight)
639
640
641
  second_stage_classification_loss = (
      losses_builder.build_faster_rcnn_classification_loss(
          frcnn_config.second_stage_classification_loss))
642
643
  second_stage_classification_loss_weight = (
      frcnn_config.second_stage_classification_loss_weight)
644
645
  second_stage_mask_prediction_loss_weight = (
      frcnn_config.second_stage_mask_prediction_loss_weight)
646
647
648
649
650
651
652
653

  hard_example_miner = None
  if frcnn_config.HasField('hard_example_miner'):
    hard_example_miner = losses_builder.build_hard_example_miner(
        frcnn_config.hard_example_miner,
        second_stage_classification_loss_weight,
        second_stage_localization_loss_weight)

654
655
656
  crop_and_resize_fn = (
      ops.matmul_crop_and_resize if frcnn_config.use_matmul_crop_and_resize
      else ops.native_crop_and_resize)
657
658
  clip_anchors_to_image = (
      frcnn_config.clip_anchors_to_image)
659

660
  common_kwargs = {
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
      'is_training':
          is_training,
      'num_classes':
          num_classes,
      'image_resizer_fn':
          image_resizer_fn,
      'feature_extractor':
          feature_extractor,
      'number_of_stages':
          number_of_stages,
      'first_stage_anchor_generator':
          first_stage_anchor_generator,
      'first_stage_target_assigner':
          first_stage_target_assigner,
      'first_stage_atrous_rate':
          first_stage_atrous_rate,
677
      'first_stage_box_predictor_arg_scope_fn':
678
          first_stage_box_predictor_arg_scope_fn,
679
      'first_stage_box_predictor_kernel_size':
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
          first_stage_box_predictor_kernel_size,
      'first_stage_box_predictor_depth':
          first_stage_box_predictor_depth,
      'first_stage_minibatch_size':
          first_stage_minibatch_size,
      'first_stage_sampler':
          first_stage_sampler,
      'first_stage_non_max_suppression_fn':
          first_stage_non_max_suppression_fn,
      'first_stage_max_proposals':
          first_stage_max_proposals,
      'first_stage_localization_loss_weight':
          first_stage_loc_loss_weight,
      'first_stage_objectness_loss_weight':
          first_stage_obj_loss_weight,
      'second_stage_target_assigner':
          second_stage_target_assigner,
      'second_stage_batch_size':
          second_stage_batch_size,
      'second_stage_sampler':
          second_stage_sampler,
701
      'second_stage_non_max_suppression_fn':
702
703
704
          second_stage_non_max_suppression_fn,
      'second_stage_score_conversion_fn':
          second_stage_score_conversion_fn,
705
      'second_stage_localization_loss_weight':
706
          second_stage_localization_loss_weight,
707
      'second_stage_classification_loss':
708
          second_stage_classification_loss,
709
      'second_stage_classification_loss_weight':
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
          second_stage_classification_loss_weight,
      'hard_example_miner':
          hard_example_miner,
      'add_summaries':
          add_summaries,
      'crop_and_resize_fn':
          crop_and_resize_fn,
      'clip_anchors_to_image':
          clip_anchors_to_image,
      'use_static_shapes':
          use_static_shapes,
      'resize_masks':
          frcnn_config.resize_masks,
      'return_raw_detections_during_predict':
          frcnn_config.return_raw_detections_during_predict,
      'output_final_box_features':
          frcnn_config.output_final_box_features
727
  }
728

729
730
731
732
733
  if ((not is_keras and isinstance(second_stage_box_predictor,
                                   rfcn_box_predictor.RfcnBoxPredictor)) or
      (is_keras and
       isinstance(second_stage_box_predictor,
                  rfcn_keras_box_predictor.RfcnKerasBoxPredictor))):
734
735
736
    return rfcn_meta_arch.RFCNMetaArch(
        second_stage_rfcn_box_predictor=second_stage_box_predictor,
        **common_kwargs)
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
  elif frcnn_config.HasField('context_config'):
    context_config = frcnn_config.context_config
    common_kwargs.update({
        'attention_bottleneck_dimension':
            context_config.attention_bottleneck_dimension,
        'attention_temperature':
            context_config.attention_temperature
    })
    return context_rcnn_meta_arch.ContextRCNNMetaArch(
        initial_crop_size=initial_crop_size,
        maxpool_kernel_size=maxpool_kernel_size,
        maxpool_stride=maxpool_stride,
        second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
        second_stage_mask_prediction_loss_weight=(
            second_stage_mask_prediction_loss_weight),
        **common_kwargs)
753
754
755
756
757
758
  else:
    return faster_rcnn_meta_arch.FasterRCNNMetaArch(
        initial_crop_size=initial_crop_size,
        maxpool_kernel_size=maxpool_kernel_size,
        maxpool_stride=maxpool_stride,
        second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
759
760
        second_stage_mask_prediction_loss_weight=(
            second_stage_mask_prediction_loss_weight),
761
        **common_kwargs)
762
763
764
765
766
767
768
769
770

EXPERIMENTAL_META_ARCH_BUILDER_MAP = {
}


def _build_experimental_model(config, is_training, add_summaries=True):
  return EXPERIMENTAL_META_ARCH_BUILDER_MAP[config.name](
      is_training, add_summaries)

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

# The class ID in the groundtruth/model architecture is usually 0-based while
# the ID in the label map is 1-based. The offset is used to convert between the
# the two.
CLASS_ID_OFFSET = 1
KEYPOINT_STD_DEV_DEFAULT = 1.0


def keypoint_proto_to_params(kp_config, keypoint_map_dict):
  """Converts CenterNet.KeypointEstimation proto to parameter namedtuple."""
  label_map_item = keypoint_map_dict[kp_config.keypoint_class_name]

  classification_loss, localization_loss, _, _, _, _, _ = (
      losses_builder.build(kp_config.loss))

  keypoint_indices = [
      keypoint.id for keypoint in label_map_item.keypoints
  ]
  keypoint_labels = [
      keypoint.label for keypoint in label_map_item.keypoints
  ]
  keypoint_std_dev_dict = {
      label: KEYPOINT_STD_DEV_DEFAULT for label in keypoint_labels
  }
  if kp_config.keypoint_label_to_std:
    for label, value in kp_config.keypoint_label_to_std.items():
      keypoint_std_dev_dict[label] = value
  keypoint_std_dev = [keypoint_std_dev_dict[label] for label in keypoint_labels]
  return center_net_meta_arch.KeypointEstimationParams(
      task_name=kp_config.task_name,
      class_id=label_map_item.id - CLASS_ID_OFFSET,
      keypoint_indices=keypoint_indices,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      keypoint_labels=keypoint_labels,
      keypoint_std_dev=keypoint_std_dev,
      task_loss_weight=kp_config.task_loss_weight,
      keypoint_regression_loss_weight=kp_config.keypoint_regression_loss_weight,
      keypoint_heatmap_loss_weight=kp_config.keypoint_heatmap_loss_weight,
      keypoint_offset_loss_weight=kp_config.keypoint_offset_loss_weight,
      heatmap_bias_init=kp_config.heatmap_bias_init,
      keypoint_candidate_score_threshold=(
          kp_config.keypoint_candidate_score_threshold),
      num_candidates_per_keypoint=kp_config.num_candidates_per_keypoint,
      peak_max_pool_kernel_size=kp_config.peak_max_pool_kernel_size,
      unmatched_keypoint_score=kp_config.unmatched_keypoint_score,
      box_scale=kp_config.box_scale,
      candidate_search_scale=kp_config.candidate_search_scale,
819
820
821
      candidate_ranking_mode=kp_config.candidate_ranking_mode,
      offset_peak_radius=kp_config.offset_peak_radius,
      per_keypoint_offset=kp_config.per_keypoint_offset)
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855


def object_detection_proto_to_params(od_config):
  """Converts CenterNet.ObjectDetection proto to parameter namedtuple."""
  loss = losses_pb2.Loss()
  # Add dummy classification loss to avoid the loss_builder throwing error.
  # TODO(yuhuic): update the loss builder to take the classification loss
  # directly.
  loss.classification_loss.weighted_sigmoid.CopyFrom(
      losses_pb2.WeightedSigmoidClassificationLoss())
  loss.localization_loss.CopyFrom(od_config.localization_loss)
  _, localization_loss, _, _, _, _, _ = (losses_builder.build(loss))
  return center_net_meta_arch.ObjectDetectionParams(
      localization_loss=localization_loss,
      scale_loss_weight=od_config.scale_loss_weight,
      offset_loss_weight=od_config.offset_loss_weight,
      task_loss_weight=od_config.task_loss_weight)


def object_center_proto_to_params(oc_config):
  """Converts CenterNet.ObjectCenter proto to parameter namedtuple."""
  loss = losses_pb2.Loss()
  # Add dummy localization loss to avoid the loss_builder throwing error.
  # TODO(yuhuic): update the loss builder to take the localization loss
  # directly.
  loss.localization_loss.weighted_l2.CopyFrom(
      losses_pb2.WeightedL2LocalizationLoss())
  loss.classification_loss.CopyFrom(oc_config.classification_loss)
  classification_loss, _, _, _, _, _, _ = (losses_builder.build(loss))
  return center_net_meta_arch.ObjectCenterParams(
      classification_loss=classification_loss,
      object_center_loss_weight=oc_config.object_center_loss_weight,
      heatmap_bias_init=oc_config.heatmap_bias_init,
      min_box_overlap_iou=oc_config.min_box_overlap_iou,
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
      max_box_predictions=oc_config.max_box_predictions,
      use_labeled_classes=oc_config.use_labeled_classes)


def mask_proto_to_params(mask_config):
  """Converts CenterNet.MaskEstimation proto to parameter namedtuple."""
  loss = losses_pb2.Loss()
  # Add dummy localization loss to avoid the loss_builder throwing error.
  loss.localization_loss.weighted_l2.CopyFrom(
      losses_pb2.WeightedL2LocalizationLoss())
  loss.classification_loss.CopyFrom(mask_config.classification_loss)
  classification_loss, _, _, _, _, _, _ = (losses_builder.build(loss))
  return center_net_meta_arch.MaskParams(
      classification_loss=classification_loss,
      task_loss_weight=mask_config.task_loss_weight,
      mask_height=mask_config.mask_height,
      mask_width=mask_config.mask_width,
      score_threshold=mask_config.score_threshold,
      heatmap_bias_init=mask_config.heatmap_bias_init)
875
876


877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
def densepose_proto_to_params(densepose_config):
  """Converts CenterNet.DensePoseEstimation proto to parameter namedtuple."""
  classification_loss, localization_loss, _, _, _, _, _ = (
      losses_builder.build(densepose_config.loss))
  return center_net_meta_arch.DensePoseParams(
      class_id=densepose_config.class_id,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      part_loss_weight=densepose_config.part_loss_weight,
      coordinate_loss_weight=densepose_config.coordinate_loss_weight,
      num_parts=densepose_config.num_parts,
      task_loss_weight=densepose_config.task_loss_weight,
      upsample_to_input_res=densepose_config.upsample_to_input_res,
      heatmap_bias_init=densepose_config.heatmap_bias_init)


893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
def _build_center_net_model(center_net_config, is_training, add_summaries):
  """Build a CenterNet detection model.

  Args:
    center_net_config: A CenterNet proto object with model configuration.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tf summaries in the model.

  Returns:
    CenterNetMetaArch based on the config.

  """

  image_resizer_fn = image_resizer_builder.build(
      center_net_config.image_resizer)
  _check_feature_extractor_exists(center_net_config.feature_extractor.type)
  feature_extractor = _build_center_net_feature_extractor(
      center_net_config.feature_extractor)
  object_center_params = object_center_proto_to_params(
      center_net_config.object_center_params)

  object_detection_params = None
  if center_net_config.HasField('object_detection_task'):
    object_detection_params = object_detection_proto_to_params(
        center_net_config.object_detection_task)

  keypoint_params_dict = None
  if center_net_config.keypoint_estimation_task:
    label_map_proto = label_map_util.load_labelmap(
        center_net_config.keypoint_label_map_path)
    keypoint_map_dict = {
        item.name: item for item in label_map_proto.item if item.keypoints
    }
    keypoint_params_dict = {}
    keypoint_class_id_set = set()
    all_keypoint_indices = []
    for task in center_net_config.keypoint_estimation_task:
      kp_params = keypoint_proto_to_params(task, keypoint_map_dict)
      keypoint_params_dict[task.task_name] = kp_params
      all_keypoint_indices.extend(kp_params.keypoint_indices)
      if kp_params.class_id in keypoint_class_id_set:
        raise ValueError(('Multiple keypoint tasks map to the same class id is '
                          'not allowed: %d' % kp_params.class_id))
      else:
        keypoint_class_id_set.add(kp_params.class_id)
    if len(all_keypoint_indices) > len(set(all_keypoint_indices)):
      raise ValueError('Some keypoint indices are used more than once.')
940
941
942
943
944

  mask_params = None
  if center_net_config.HasField('mask_estimation_task'):
    mask_params = mask_proto_to_params(center_net_config.mask_estimation_task)

945
946
947
948
949
  densepose_params = None
  if center_net_config.HasField('densepose_estimation_task'):
    densepose_params = densepose_proto_to_params(
        center_net_config.densepose_estimation_task)

950
951
952
953
954
955
956
957
  return center_net_meta_arch.CenterNetMetaArch(
      is_training=is_training,
      add_summaries=add_summaries,
      num_classes=center_net_config.num_classes,
      feature_extractor=feature_extractor,
      image_resizer_fn=image_resizer_fn,
      object_center_params=object_center_params,
      object_detection_params=object_detection_params,
958
      keypoint_params_dict=keypoint_params_dict,
959
960
      mask_params=mask_params,
      densepose_params=densepose_params)
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978


def _build_center_net_feature_extractor(
    feature_extractor_config):
  """Build a CenterNet feature extractor from the given config."""

  if feature_extractor_config.type not in CENTER_NET_EXTRACTOR_FUNCTION_MAP:
    raise ValueError('\'{}\' is not a known CenterNet feature extractor type'
                     .format(feature_extractor_config.type))

  return CENTER_NET_EXTRACTOR_FUNCTION_MAP[feature_extractor_config.type](
      channel_means=list(feature_extractor_config.channel_means),
      channel_stds=list(feature_extractor_config.channel_stds),
      bgr_ordering=feature_extractor_config.bgr_ordering
  )


META_ARCH_BUILDER_MAP = {
979
980
    'ssd': _build_ssd_model,
    'faster_rcnn': _build_faster_rcnn_model,
981
982
    'experimental_model': _build_experimental_model,
    'center_net': _build_center_net_model
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
}


def build(model_config, is_training, add_summaries=True):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tensorflow summaries in the model graph.
  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')

  meta_architecture = model_config.WhichOneof('model')

1005
  if meta_architecture not in META_ARCH_BUILDER_MAP:
1006
1007
    raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
  else:
1008
    build_func = META_ARCH_BUILDER_MAP[meta_architecture]
1009
1010
    return build_func(getattr(model_config, meta_architecture), is_training,
                      add_summaries)