detection.py 5.29 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Detection input and model functions for serving/inference."""

import tensorflow as tf

from official.vision.beta import configs
from official.vision.beta.modeling import factory
from official.vision.beta.ops import anchor
from official.vision.beta.ops import preprocess_ops
from official.vision.beta.serving import export_base


MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255)
STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255)


class DetectionModule(export_base.ExportModule):
  """Detection Module."""

  def build_model(self):

    if self._batch_size is None:
      ValueError("batch_size can't be None for detection models")
    if not self._params.task.model.detection_generator.use_batched_nms:
      ValueError('Only batched_nms is supported.')
    input_specs = tf.keras.layers.InputSpec(shape=[self._batch_size] +
                                            self._input_image_size + [3])

    if isinstance(self._params.task.model, configs.maskrcnn.MaskRCNN):
      self._model = factory.build_maskrcnn(
          input_specs=input_specs,
          model_config=self._params.task.model)
    elif isinstance(self._params.task.model, configs.retinanet.RetinaNet):
      self._model = factory.build_retinanet(
          input_specs=input_specs,
          model_config=self._params.task.model)
    else:
      raise ValueError('Detection module not implemented for {} model.'.format(
          type(self._params.task.model)))

    return self._model

  def _build_inputs(self, image):
    """Builds classification model inputs for serving."""
    model_params = self._params.task.model
    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image,
                                           offset=MEAN_RGB,
                                           scale=STDDEV_RGB)

    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        self._input_image_size,
        padded_size=preprocess_ops.compute_padded_size(
            self._input_image_size, 2**model_params.max_level),
        aug_scale_min=1.0,
        aug_scale_max=1.0)

    image_shape = image_info[1, :]  # Shape of original image.

    input_anchor = anchor.build_anchor_generator(
        min_level=model_params.min_level,
        max_level=model_params.max_level,
        num_scales=model_params.anchor.num_scales,
        aspect_ratios=model_params.anchor.aspect_ratios,
        anchor_size=model_params.anchor.anchor_size)
    anchor_boxes = input_anchor(image_size=(self._input_image_size[0],
                                            self._input_image_size[1]))

    return image, anchor_boxes, image_shape

  def _run_inference_on_image_tensors(self, images: tf.Tensor):
    """Cast image to float and run inference.

    Args:
      images: uint8 Tensor of shape [batch_size, None, None, 3]
    Returns:
      Tensor holding classification output logits.
    """
    model_params = self._params.task.model
    with tf.device('cpu:0'):
      images = tf.cast(images, dtype=tf.float32)

      # Tensor Specs for map_fn outputs (images, anchor_boxes, and image_info).
      images_spec = tf.TensorSpec(shape=self._input_image_size + [3],
                                  dtype=tf.float32)

      num_anchors = model_params.anchor.num_scales * len(
          model_params.anchor.aspect_ratios) * 4
      anchor_shapes = []
      for level in range(model_params.min_level, model_params.max_level + 1):
        anchor_level_spec = tf.TensorSpec(
            shape=[
                self._input_image_size[0] // 2**level,
                self._input_image_size[1] // 2**level, num_anchors
            ],
            dtype=tf.float32)
        anchor_shapes.append((str(level), anchor_level_spec))

      image_shape_spec = tf.TensorSpec(shape=[2,], dtype=tf.float32)

      images, anchor_boxes, image_shape = tf.nest.map_structure(
          tf.identity,
          tf.map_fn(
              self._build_inputs,
              elems=images,
              fn_output_signature=(images_spec, dict(anchor_shapes),
                                   image_shape_spec),
              parallel_iterations=32))

    detections = self._model.call(
        images=images,
        image_shape=image_shape,
        anchor_boxes=anchor_boxes,
        training=False)

    final_outputs = {
        'detection_boxes': detections['detection_boxes'],
        'detection_scores': detections['detection_scores'],
        'detection_classes': detections['detection_classes'],
        'num_detections': detections['num_detections']
    }
    if 'detection_masks' in detections.keys():
      final_outputs.update('detection_masks', detections['detection_masks'])

    return final_outputs