Commit f97074b0 authored by Abdullah Rashwan's avatar Abdullah Rashwan Committed by A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 335692122
parent 92e115a1
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Detection input and model functions for serving/inference."""
import tensorflow as tf
from official.vision.beta import configs
from official.vision.beta.modeling import factory
from official.vision.beta.ops import anchor
from official.vision.beta.ops import preprocess_ops
from official.vision.beta.serving import export_base
MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255)
STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255)
class DetectionModule(export_base.ExportModule):
"""Detection Module."""
def build_model(self):
if self._batch_size is None:
ValueError("batch_size can't be None for detection models")
if not self._params.task.model.detection_generator.use_batched_nms:
ValueError('Only batched_nms is supported.')
input_specs = tf.keras.layers.InputSpec(shape=[self._batch_size] +
self._input_image_size + [3])
if isinstance(self._params.task.model, configs.maskrcnn.MaskRCNN):
self._model = factory.build_maskrcnn(
input_specs=input_specs,
model_config=self._params.task.model)
elif isinstance(self._params.task.model, configs.retinanet.RetinaNet):
self._model = factory.build_retinanet(
input_specs=input_specs,
model_config=self._params.task.model)
else:
raise ValueError('Detection module not implemented for {} model.'.format(
type(self._params.task.model)))
return self._model
def _build_inputs(self, image):
"""Builds classification model inputs for serving."""
model_params = self._params.task.model
# Normalizes image with mean and std pixel values.
image = preprocess_ops.normalize_image(image,
offset=MEAN_RGB,
scale=STDDEV_RGB)
image, image_info = preprocess_ops.resize_and_crop_image(
image,
self._input_image_size,
padded_size=preprocess_ops.compute_padded_size(
self._input_image_size, 2**model_params.max_level),
aug_scale_min=1.0,
aug_scale_max=1.0)
image_shape = image_info[1, :] # Shape of original image.
input_anchor = anchor.build_anchor_generator(
min_level=model_params.min_level,
max_level=model_params.max_level,
num_scales=model_params.anchor.num_scales,
aspect_ratios=model_params.anchor.aspect_ratios,
anchor_size=model_params.anchor.anchor_size)
anchor_boxes = input_anchor(image_size=(self._input_image_size[0],
self._input_image_size[1]))
return image, anchor_boxes, image_shape
def _run_inference_on_image_tensors(self, images: tf.Tensor):
"""Cast image to float and run inference.
Args:
images: uint8 Tensor of shape [batch_size, None, None, 3]
Returns:
Tensor holding classification output logits.
"""
model_params = self._params.task.model
with tf.device('cpu:0'):
images = tf.cast(images, dtype=tf.float32)
# Tensor Specs for map_fn outputs (images, anchor_boxes, and image_info).
images_spec = tf.TensorSpec(shape=self._input_image_size + [3],
dtype=tf.float32)
num_anchors = model_params.anchor.num_scales * len(
model_params.anchor.aspect_ratios) * 4
anchor_shapes = []
for level in range(model_params.min_level, model_params.max_level + 1):
anchor_level_spec = tf.TensorSpec(
shape=[
self._input_image_size[0] // 2**level,
self._input_image_size[1] // 2**level, num_anchors
],
dtype=tf.float32)
anchor_shapes.append((str(level), anchor_level_spec))
image_shape_spec = tf.TensorSpec(shape=[2,], dtype=tf.float32)
images, anchor_boxes, image_shape = tf.nest.map_structure(
tf.identity,
tf.map_fn(
self._build_inputs,
elems=images,
fn_output_signature=(images_spec, dict(anchor_shapes),
image_shape_spec),
parallel_iterations=32))
detections = self._model.call(
images=images,
image_shape=image_shape,
anchor_boxes=anchor_boxes,
training=False)
final_outputs = {
'detection_boxes': detections['detection_boxes'],
'detection_scores': detections['detection_scores'],
'detection_classes': detections['detection_classes'],
'num_detections': detections['num_detections']
}
if 'detection_masks' in detections.keys():
final_outputs.update('detection_masks', detections['detection_masks'])
return final_outputs
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test for image classification export lib."""
import io
import os
from absl.testing import parameterized
import numpy as np
from PIL import Image
import tensorflow as tf
from official.common import registry_imports # pylint: disable=unused-import
from official.core import exp_factory
from official.vision.beta.serving import detection
class DetectionExportTest(tf.test.TestCase, parameterized.TestCase):
def _get_detection_module(self, experiment_name):
params = exp_factory.get_exp_config(experiment_name)
params.task.model.backbone.resnet.model_id = 18
params.task.model.detection_generator.use_batched_nms = True
detection_module = detection.DetectionModule(
params, batch_size=1, input_image_size=[640, 640])
return detection_module
def _export_from_module(self, module, input_type, batch_size, save_directory):
if input_type == 'image_tensor':
input_signature = tf.TensorSpec(
shape=[batch_size, 640, 640, 3], dtype=tf.uint8)
signatures = {
'serving_default':
module.inference_from_image_tensors.get_concrete_function(
input_signature)
}
elif input_type == 'image_bytes':
input_signature = tf.TensorSpec(shape=[batch_size], dtype=tf.string)
signatures = {
'serving_default':
module.inference_from_image_bytes.get_concrete_function(
input_signature)
}
elif input_type == 'tf_example':
input_signature = tf.TensorSpec(shape=[batch_size], dtype=tf.string)
signatures = {
'serving_default':
module.inference_from_tf_example.get_concrete_function(
input_signature)
}
else:
raise ValueError('Unrecognized `input_type`')
tf.saved_model.save(module,
save_directory,
signatures=signatures)
def _get_dummy_input(self, input_type, batch_size):
"""Get dummy input for the given input type."""
if input_type == 'image_tensor':
return tf.zeros((batch_size, 640, 640, 3), dtype=np.uint8)
elif input_type == 'image_bytes':
image = Image.fromarray(np.zeros((640, 640, 3), dtype=np.uint8))
byte_io = io.BytesIO()
image.save(byte_io, 'PNG')
return [byte_io.getvalue() for b in range(batch_size)]
elif input_type == 'tf_example':
image_tensor = tf.zeros((640, 640, 3), dtype=tf.uint8)
encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).numpy()
example = tf.train.Example(
features=tf.train.Features(
feature={
'image/encoded':
tf.train.Feature(
bytes_list=tf.train.BytesList(value=[encoded_jpeg])),
})).SerializeToString()
return [example for b in range(batch_size)]
@parameterized.parameters(
('image_tensor', 'fasterrcnn_resnetfpn_coco'),
('image_bytes', 'fasterrcnn_resnetfpn_coco'),
('tf_example', 'fasterrcnn_resnetfpn_coco'),
('image_tensor', 'maskrcnn_resnetfpn_coco'),
('image_bytes', 'maskrcnn_resnetfpn_coco'),
('tf_example', 'maskrcnn_resnetfpn_coco'),
('image_tensor', 'retinanet_resnetfpn_coco'),
('image_bytes', 'retinanet_resnetfpn_coco'),
('tf_example', 'retinanet_resnetfpn_coco'),
)
def test_export(self, input_type, experiment_name):
tmp_dir = self.get_temp_dir()
batch_size = 1
experiment_name = 'fasterrcnn_resnetfpn_coco'
module = self._get_detection_module(experiment_name)
model = module.build_model()
self._export_from_module(module, input_type, batch_size, tmp_dir)
self.assertTrue(os.path.exists(os.path.join(tmp_dir, 'saved_model.pb')))
self.assertTrue(os.path.exists(
os.path.join(tmp_dir, 'variables', 'variables.index')))
self.assertTrue(os.path.exists(
os.path.join(tmp_dir, 'variables', 'variables.data-00000-of-00001')))
imported = tf.saved_model.load(tmp_dir)
classification_fn = imported.signatures['serving_default']
images = self._get_dummy_input(input_type, batch_size)
processed_images, anchor_boxes, image_shape = module._build_inputs(
tf.zeros((224, 224, 3), dtype=tf.uint8))
processed_images = tf.expand_dims(processed_images, 0)
image_shape = tf.expand_dims(image_shape, 0)
for l, l_boxes in anchor_boxes.items():
anchor_boxes[l] = tf.expand_dims(l_boxes, 0)
expected_outputs = model(
images=processed_images,
image_shape=image_shape,
anchor_boxes=anchor_boxes,
training=False)
outputs = classification_fn(tf.constant(images))
self.assertAllClose(outputs['num_detections'].numpy(),
expected_outputs['num_detections'].numpy())
if __name__ == '__main__':
tf.test.main()
...@@ -62,7 +62,7 @@ class ExportModule(tf.Module, metaclass=abc.ABCMeta): ...@@ -62,7 +62,7 @@ class ExportModule(tf.Module, metaclass=abc.ABCMeta):
@tf.function @tf.function
def inference_from_image_tensors(self, input_tensor): def inference_from_image_tensors(self, input_tensor):
return dict(outputs=self._run_inference_on_image_tensors(input_tensor)) return self._run_inference_on_image_tensors(input_tensor)
@tf.function @tf.function
def inference_from_image_bytes(self, input_tensor): def inference_from_image_bytes(self, input_tensor):
...@@ -76,7 +76,7 @@ class ExportModule(tf.Module, metaclass=abc.ABCMeta): ...@@ -76,7 +76,7 @@ class ExportModule(tf.Module, metaclass=abc.ABCMeta):
shape=self._input_image_size + [3], dtype=tf.uint8), shape=self._input_image_size + [3], dtype=tf.uint8),
parallel_iterations=32)) parallel_iterations=32))
images = tf.stack(images) images = tf.stack(images)
return dict(outputs=self._run_inference_on_image_tensors(images)) return self._run_inference_on_image_tensors(images)
@tf.function @tf.function
def inference_from_tf_example(self, input_tensor): def inference_from_tf_example(self, input_tensor):
...@@ -91,4 +91,4 @@ class ExportModule(tf.Module, metaclass=abc.ABCMeta): ...@@ -91,4 +91,4 @@ class ExportModule(tf.Module, metaclass=abc.ABCMeta):
dtype=tf.uint8, dtype=tf.uint8,
parallel_iterations=32)) parallel_iterations=32))
images = tf.stack(images) images = tf.stack(images)
return dict(outputs=self._run_inference_on_image_tensors(images)) return self._run_inference_on_image_tensors(images)
...@@ -47,6 +47,7 @@ from official.core import exp_factory ...@@ -47,6 +47,7 @@ from official.core import exp_factory
from official.core import train_utils from official.core import train_utils
from official.modeling import hyperparams from official.modeling import hyperparams
from official.vision.beta import configs from official.vision.beta import configs
from official.vision.beta.serving import detection
from official.vision.beta.serving import image_classification from official.vision.beta.serving import image_classification
FLAGS = flags.FLAGS FLAGS = flags.FLAGS
...@@ -105,6 +106,12 @@ def export_inference_graph(input_type, batch_size, input_image_size, params, ...@@ -105,6 +106,12 @@ def export_inference_graph(input_type, batch_size, input_image_size, params,
params=params, params=params,
batch_size=batch_size, batch_size=batch_size,
input_image_size=input_image_size) input_image_size=input_image_size)
elif isinstance(params.task, configs.retinanet.RetinaNetTask) or isinstance(
params.task, configs.maskrcnn.MaskRCNNTask):
export_module = detection.DetectionModule(
params=params,
batch_size=batch_size,
input_image_size=input_image_size)
else: else:
raise ValueError('Export module not implemented for {} task.'.format( raise ValueError('Export module not implemented for {} task.'.format(
type(params.task))) type(params.task)))
...@@ -124,7 +131,7 @@ def export_inference_graph(input_type, batch_size, input_image_size, params, ...@@ -124,7 +131,7 @@ def export_inference_graph(input_type, batch_size, input_image_size, params,
dtype=tf.uint8) dtype=tf.uint8)
signatures = { signatures = {
'serving_default': 'serving_default':
export_module.inference_from_image.get_concrete_function( export_module.inference_from_image_tensors.get_concrete_function(
input_signature) input_signature)
} }
elif input_type == 'image_bytes': elif input_type == 'image_bytes':
......
...@@ -80,4 +80,4 @@ class ClassificationModule(export_base.ExportModule): ...@@ -80,4 +80,4 @@ class ClassificationModule(export_base.ExportModule):
logits = self._model(images, training=False) logits = self._model(images, training=False)
return logits return dict(outputs=logits)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment