train_spatial_partitioning.py 5.59 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
"""TensorFlow Model Garden Vision training driver with spatial partitioning."""
Fan Yang's avatar
Fan Yang committed
16
from typing import Sequence
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

from absl import app
from absl import flags
import gin
import numpy as np
import tensorflow as tf

from official.common import registry_imports  # pylint: disable=unused-import
from official.common import distribute_utils
from official.common import flags as tfm_flags
from official.core import task_factory
from official.core import train_lib
from official.core import train_utils
from official.modeling import performance


FLAGS = flags.FLAGS


Fan Yang's avatar
Fan Yang committed
36
37
38
39
40
41
42
43
44
45
46
47
48
def get_computation_shape_for_model_parallelism(
    input_partition_dims: Sequence[int]) -> Sequence[int]:
  """Returns computation shape to be used for TPUStrategy spatial partition.

  Args:
    input_partition_dims: The number of partitions along each dimension.

  Returns:
    A list of integers specifying the computation shape.

  Raises:
    ValueError: If the number of logical devices is not supported.
  """
Abdullah Rashwan's avatar
Abdullah Rashwan committed
49
50
51
  num_logical_devices = np.prod(input_partition_dims)
  if num_logical_devices == 1:
    return [1, 1, 1, 1]
Fan Yang's avatar
Fan Yang committed
52
  elif num_logical_devices == 2:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
53
    return [1, 1, 1, 2]
Fan Yang's avatar
Fan Yang committed
54
  elif num_logical_devices == 4:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
55
    return [1, 2, 1, 2]
Fan Yang's avatar
Fan Yang committed
56
  elif num_logical_devices == 8:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
57
    return [2, 2, 1, 2]
Fan Yang's avatar
Fan Yang committed
58
  elif num_logical_devices == 16:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
59
    return [4, 2, 1, 2]
Fan Yang's avatar
Fan Yang committed
60
61
62
63
  else:
    raise ValueError(
        'The number of logical devices %d is not supported. Supported numbers '
        'are 1, 2, 4, 8, 16' % num_logical_devices)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113


def create_distribution_strategy(distribution_strategy,
                                 tpu_address,
                                 input_partition_dims=None,
                                 num_gpus=None):
  """Creates distribution strategy to use for computation."""

  if input_partition_dims is not None:
    if distribution_strategy != 'tpu':
      raise ValueError('Spatial partitioning is only supported '
                       'for TPUStrategy.')

    # When `input_partition_dims` is specified create custom TPUStrategy
    # instance with computation shape for model parallelism.
    resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
        tpu=tpu_address)
    if tpu_address not in ('', 'local'):
      tf.config.experimental_connect_to_cluster(resolver)

    topology = tf.tpu.experimental.initialize_tpu_system(resolver)
    num_replicas = resolver.get_tpu_system_metadata().num_cores // np.prod(
        input_partition_dims)
    device_assignment = tf.tpu.experimental.DeviceAssignment.build(
        topology,
        num_replicas=num_replicas,
        computation_shape=input_partition_dims)
    return tf.distribute.TPUStrategy(
        resolver, experimental_device_assignment=device_assignment)

  return distribute_utils.get_distribution_strategy(
      distribution_strategy=distribution_strategy,
      tpu_address=tpu_address,
      num_gpus=num_gpus)


def main(_):
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params)
  params = train_utils.parse_configuration(FLAGS)
  model_dir = FLAGS.model_dir
  if 'train' in FLAGS.mode:
    # Pure eval modes do not output yaml files. Otherwise continuous eval job
    # may race against the train job for writing the same file.
    train_utils.serialize_config(params, model_dir)

  # Sets mixed_precision policy. Using 'mixed_float16' or 'mixed_bfloat16'
  # can have significant impact on model speeds by utilizing float16 in case of
  # GPUs, and bfloat16 in the case of TPUs. loss_scale takes effect only when
  # dtype is float16
  if params.runtime.mixed_precision_dtype:
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
114
    performance.set_mixed_precision_policy(params.runtime.mixed_precision_dtype)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

  input_partition_dims = None
  if FLAGS.mode == 'train_and_eval':
    if np.prod(params.task.train_input_partition_dims) != np.prod(
        params.task.eval_input_partition_dims):
      raise ValueError('Train and eval input partition dims can not be'
                       'partitioned on the same node')
    else:
      input_partition_dims = get_computation_shape_for_model_parallelism(
          params.task.train_input_partition_dims)
  elif FLAGS.mode == 'train':
    if params.task.train_input_partition_dims:
      input_partition_dims = get_computation_shape_for_model_parallelism(
          params.task.train_input_partition_dims)
  elif FLAGS.mode == 'eval' or FLAGS.mode == 'continuous_eval':
    if params.task.eval_input_partition_dims:
      input_partition_dims = get_computation_shape_for_model_parallelism(
          params.task.eval_input_partition_dims)

  distribution_strategy = create_distribution_strategy(
      distribution_strategy=params.runtime.distribution_strategy,
      num_gpus=params.runtime.num_gpus,
      input_partition_dims=input_partition_dims,
      tpu_address=params.runtime.tpu)
  with distribution_strategy.scope():
    task = task_factory.get_task(params.task, logging_dir=model_dir)

  train_lib.run_experiment(
      distribution_strategy=distribution_strategy,
      task=task,
      mode=FLAGS.mode,
      params=params,
      model_dir=model_dir)

if __name__ == '__main__':
  tfm_flags.define_flags()
  app.run(main)