"git@developer.sourcefind.cn:OpenDAS/ollama.git" did not exist on "4d71c559b21ec9207a328b824ce534bdbaf59f2d"
Commit d74baa35 authored by Abdullah Rashwan's avatar Abdullah Rashwan Committed by A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 345761622
parent 2cbcddb1
...@@ -91,6 +91,10 @@ class SemanticSegmentationTask(cfg.TaskConfig): ...@@ -91,6 +91,10 @@ class SemanticSegmentationTask(cfg.TaskConfig):
train_data: DataConfig = DataConfig(is_training=True) train_data: DataConfig = DataConfig(is_training=True)
validation_data: DataConfig = DataConfig(is_training=False) validation_data: DataConfig = DataConfig(is_training=False)
losses: Losses = Losses() losses: Losses = Losses()
train_input_partition_dims: List[int] = dataclasses.field(
default_factory=list)
eval_input_partition_dims: List[int] = dataclasses.field(
default_factory=list)
init_checkpoint: Optional[str] = None init_checkpoint: Optional[str] = None
init_checkpoint_modules: Union[ init_checkpoint_modules: Union[
str, List[str]] = 'all' # all, backbone, and/or decoder str, List[str]] = 'all' # all, backbone, and/or decoder
...@@ -366,3 +370,103 @@ def seg_resnetfpn_pascal() -> cfg.ExperimentConfig: ...@@ -366,3 +370,103 @@ def seg_resnetfpn_pascal() -> cfg.ExperimentConfig:
]) ])
return config return config
# Cityscapes Dataset (Download and process the dataset yourself)
CITYSCAPES_TRAIN_EXAMPLES = 2975
CITYSCAPES_VAL_EXAMPLES = 500
CITYSCAPES_INPUT_PATH_BASE = 'cityscapes'
@exp_factory.register_config_factory('seg_deeplabv3plus_cityscapes')
def seg_deeplabv3plus_cityscapes() -> cfg.ExperimentConfig:
"""Image segmentation on imagenet with resnet deeplabv3+."""
train_batch_size = 16
eval_batch_size = 16
steps_per_epoch = CITYSCAPES_TRAIN_EXAMPLES // train_batch_size
output_stride = 16
aspp_dilation_rates = [6, 12, 18]
multigrid = [1, 2, 4]
stem_type = 'v1'
level = int(np.math.log2(output_stride))
config = cfg.ExperimentConfig(
task=SemanticSegmentationTask(
model=SemanticSegmentationModel(
num_classes=20,
input_size=[None, None, 3],
backbone=backbones.Backbone(
type='dilated_resnet', dilated_resnet=backbones.DilatedResNet(
model_id=101, output_stride=output_stride,
stem_type=stem_type, multigrid=multigrid)),
decoder=decoders.Decoder(
type='aspp',
aspp=decoders.ASPP(
level=level, dilation_rates=aspp_dilation_rates)),
head=SegmentationHead(
level=level,
num_convs=2,
feature_fusion='deeplabv3plus',
low_level=2,
low_level_num_filters=48),
norm_activation=common.NormActivation(
activation='swish',
norm_momentum=0.99,
norm_epsilon=1e-3,
use_sync_bn=True)),
losses=Losses(l2_weight_decay=1e-4),
train_data=DataConfig(
input_path=os.path.join(CITYSCAPES_INPUT_PATH_BASE,
'train_fine**'),
output_size=[1024, 2048],
train_on_crops=True,
is_training=True,
global_batch_size=train_batch_size,
aug_scale_min=0.5,
aug_scale_max=2.0),
validation_data=DataConfig(
input_path=os.path.join(CITYSCAPES_INPUT_PATH_BASE, 'val_fine*'),
output_size=[1024, 2048],
is_training=False,
global_batch_size=eval_batch_size,
resize_eval_groundtruth=True,
drop_remainder=False),
# resnet101
init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/deeplab/deeplab_resnet101_imagenet/ckpt-62400',
init_checkpoint_modules='backbone'),
trainer=cfg.TrainerConfig(
steps_per_loop=steps_per_epoch,
summary_interval=steps_per_epoch,
checkpoint_interval=steps_per_epoch,
train_steps=500 * steps_per_epoch,
validation_steps=CITYSCAPES_VAL_EXAMPLES // eval_batch_size,
validation_interval=steps_per_epoch,
optimizer_config=optimization.OptimizationConfig({
'optimizer': {
'type': 'sgd',
'sgd': {
'momentum': 0.9
}
},
'learning_rate': {
'type': 'polynomial',
'polynomial': {
'initial_learning_rate': 0.01,
'decay_steps': 500 * steps_per_epoch,
'end_learning_rate': 0.0,
'power': 0.9
}
},
'warmup': {
'type': 'linear',
'linear': {
'warmup_steps': 5 * steps_per_epoch,
'warmup_learning_rate': 0
}
}
})),
restrictions=[
'task.train_data.is_training != None',
'task.validation_data.is_training != None'
])
return config
...@@ -163,6 +163,13 @@ class SemanticSegmentationTask(base_task.Task): ...@@ -163,6 +163,13 @@ class SemanticSegmentationTask(base_task.Task):
A dictionary of logs. A dictionary of logs.
""" """
features, labels = inputs features, labels = inputs
input_partition_dims = self.task_config.train_input_partition_dims
if input_partition_dims:
strategy = tf.distribute.get_strategy()
features = strategy.experimental_split_to_logical_devices(
features, input_partition_dims)
num_replicas = tf.distribute.get_strategy().num_replicas_in_sync num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
with tf.GradientTape() as tape: with tf.GradientTape() as tape:
outputs = model(features, training=True) outputs = model(features, training=True)
...@@ -211,6 +218,12 @@ class SemanticSegmentationTask(base_task.Task): ...@@ -211,6 +218,12 @@ class SemanticSegmentationTask(base_task.Task):
""" """
features, labels = inputs features, labels = inputs
input_partition_dims = self.task_config.eval_input_partition_dims
if input_partition_dims:
strategy = tf.distribute.get_strategy()
features = strategy.experimental_split_to_logical_devices(
features, input_partition_dims)
outputs = self.inference_step(features, model) outputs = self.inference_step(features, model)
outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs) outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)
......
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""TensorFlow Model Garden Vision training driver with spatial partitioning."""
from absl import app
from absl import flags
import gin
import numpy as np
import tensorflow as tf
from official.common import registry_imports # pylint: disable=unused-import
from official.common import distribute_utils
from official.common import flags as tfm_flags
from official.core import task_factory
from official.core import train_lib
from official.core import train_utils
from official.modeling import performance
FLAGS = flags.FLAGS
def get_computation_shape_for_model_parallelism(input_partition_dims):
"""Return computation shape to be used for TPUStrategy spatial partition."""
num_logical_devices = np.prod(input_partition_dims)
if num_logical_devices == 1:
return [1, 1, 1, 1]
if num_logical_devices == 2:
return [1, 1, 1, 2]
if num_logical_devices == 4:
return [1, 2, 1, 2]
if num_logical_devices == 8:
return [2, 2, 1, 2]
if num_logical_devices == 16:
return [4, 2, 1, 2]
def create_distribution_strategy(distribution_strategy,
tpu_address,
input_partition_dims=None,
num_gpus=None):
"""Creates distribution strategy to use for computation."""
if input_partition_dims is not None:
if distribution_strategy != 'tpu':
raise ValueError('Spatial partitioning is only supported '
'for TPUStrategy.')
# When `input_partition_dims` is specified create custom TPUStrategy
# instance with computation shape for model parallelism.
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
tpu=tpu_address)
if tpu_address not in ('', 'local'):
tf.config.experimental_connect_to_cluster(resolver)
topology = tf.tpu.experimental.initialize_tpu_system(resolver)
num_replicas = resolver.get_tpu_system_metadata().num_cores // np.prod(
input_partition_dims)
device_assignment = tf.tpu.experimental.DeviceAssignment.build(
topology,
num_replicas=num_replicas,
computation_shape=input_partition_dims)
return tf.distribute.TPUStrategy(
resolver, experimental_device_assignment=device_assignment)
return distribute_utils.get_distribution_strategy(
distribution_strategy=distribution_strategy,
tpu_address=tpu_address,
num_gpus=num_gpus)
def main(_):
gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params)
params = train_utils.parse_configuration(FLAGS)
model_dir = FLAGS.model_dir
if 'train' in FLAGS.mode:
# Pure eval modes do not output yaml files. Otherwise continuous eval job
# may race against the train job for writing the same file.
train_utils.serialize_config(params, model_dir)
# Sets mixed_precision policy. Using 'mixed_float16' or 'mixed_bfloat16'
# can have significant impact on model speeds by utilizing float16 in case of
# GPUs, and bfloat16 in the case of TPUs. loss_scale takes effect only when
# dtype is float16
if params.runtime.mixed_precision_dtype:
performance.set_mixed_precision_policy(params.runtime.mixed_precision_dtype,
params.runtime.loss_scale)
input_partition_dims = None
if FLAGS.mode == 'train_and_eval':
if np.prod(params.task.train_input_partition_dims) != np.prod(
params.task.eval_input_partition_dims):
raise ValueError('Train and eval input partition dims can not be'
'partitioned on the same node')
else:
input_partition_dims = get_computation_shape_for_model_parallelism(
params.task.train_input_partition_dims)
elif FLAGS.mode == 'train':
if params.task.train_input_partition_dims:
input_partition_dims = get_computation_shape_for_model_parallelism(
params.task.train_input_partition_dims)
elif FLAGS.mode == 'eval' or FLAGS.mode == 'continuous_eval':
if params.task.eval_input_partition_dims:
input_partition_dims = get_computation_shape_for_model_parallelism(
params.task.eval_input_partition_dims)
distribution_strategy = create_distribution_strategy(
distribution_strategy=params.runtime.distribution_strategy,
num_gpus=params.runtime.num_gpus,
input_partition_dims=input_partition_dims,
tpu_address=params.runtime.tpu)
with distribution_strategy.scope():
task = task_factory.get_task(params.task, logging_dir=model_dir)
train_lib.run_experiment(
distribution_strategy=distribution_strategy,
task=task,
mode=FLAGS.mode,
params=params,
model_dir=model_dir)
if __name__ == '__main__':
tfm_flags.define_flags()
app.run(main)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment