mobilenet.py 35.7 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Fan Yang's avatar
Fan Yang committed
15
"""Contains definitions of MobileNet Networks."""
16

Yuqi Li's avatar
Yuqi Li committed
17
import dataclasses
Fan Yang's avatar
Fan Yang committed
18
from typing import Optional, Dict, Any, Tuple
19
20
21

# Import libraries
import tensorflow as tf
22
from official.modeling import hyperparams
23
from official.modeling import tf_utils
Shixin Luo's avatar
Shixin Luo committed
24
from official.vision.beta.modeling.backbones import factory
25
26
27
28
29
from official.vision.beta.modeling.layers import nn_blocks
from official.vision.beta.modeling.layers import nn_layers

layers = tf.keras.layers

30

31
32
33
#  pylint: disable=pointless-string-statement


34
@tf.keras.utils.register_keras_serializable(package='Vision')
35
36
class Conv2DBNBlock(tf.keras.layers.Layer):
  """A convolution block with batch normalization."""
37

38
39
40
41
42
43
  def __init__(
      self,
      filters: int,
      kernel_size: int = 3,
      strides: int = 1,
      use_bias: bool = False,
Fan Yang's avatar
Fan Yang committed
44
45
      activation: str = 'relu6',
      kernel_initializer: str = 'VarianceScaling',
46
47
48
49
50
51
52
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      use_normalization: bool = True,
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      **kwargs):
53
    """A convolution block with batch normalization.
54

55
    Args:
Fan Yang's avatar
Fan Yang committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
      filters: An `int` number of filters for the first two convolutions. Note
        that the third and final convolution will use 4 times as many filters.
      kernel_size: An `int` specifying the height and width of the 2D
        convolution window.
      strides: An `int` of block stride. If greater than 1, this block will
        ultimately downsample the input.
      use_bias: If True, use bias in the convolution layer.
      activation: A `str` name of the activation function.
      kernel_initializer: A `str` for kernel initializer of convolutional
        layers.
      kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
        Default to None.
      use_normalization: If True, use batch normalization.
      use_sync_bn: If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      **kwargs: Additional keyword arguments to be passed.
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    """
    super(Conv2DBNBlock, self).__init__(**kwargs)
    self._filters = filters
    self._kernel_size = kernel_size
    self._strides = strides
    self._activation = activation
    self._use_bias = use_bias
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._use_normalization = use_normalization
    self._use_sync_bn = use_sync_bn
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    if use_sync_bn:
      self._norm = tf.keras.layers.experimental.SyncBatchNormalization
    else:
      self._norm = tf.keras.layers.BatchNormalization
    if tf.keras.backend.image_data_format() == 'channels_last':
      self._bn_axis = -1
    else:
      self._bn_axis = 1

  def get_config(self):
    config = {
        'filters': self._filters,
        'strides': self._strides,
        'kernel_size': self._kernel_size,
        'use_bias': self._use_bias,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'activation': self._activation,
        'use_sync_bn': self._use_sync_bn,
        'use_normalization': self._use_normalization,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon
    }
    base_config = super(Conv2DBNBlock, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def build(self, input_shape):
    self._conv0 = tf.keras.layers.Conv2D(
        filters=self._filters,
        kernel_size=self._kernel_size,
        strides=self._strides,
        padding='same',
        use_bias=self._use_bias,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)
    if self._use_normalization:
      self._norm0 = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon)
132
133
    self._activation_layer = tf_utils.get_activation(
        self._activation, use_keras_layer=True)
134
135
136
137
138
139
140

    super(Conv2DBNBlock, self).build(input_shape)

  def call(self, inputs, training=None):
    x = self._conv0(inputs)
    if self._use_normalization:
      x = self._norm0(x)
141
    return self._activation_layer(x)
142
143
144
145

"""
Architecture: https://arxiv.org/abs/1704.04861.

146
147
148
"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications" Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
149
150
151
"""
MNV1_BLOCK_SPECS = {
    'spec_name': 'MobileNetV1',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
152
153
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides',
                          'filters', 'is_output'],
154
    'block_specs': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        ('convbn', 3, 2, 32, False),
        ('depsepconv', 3, 1, 64, False),
        ('depsepconv', 3, 2, 128, False),
        ('depsepconv', 3, 1, 128, True),
        ('depsepconv', 3, 2, 256, False),
        ('depsepconv', 3, 1, 256, True),
        ('depsepconv', 3, 2, 512, False),
        ('depsepconv', 3, 1, 512, False),
        ('depsepconv', 3, 1, 512, False),
        ('depsepconv', 3, 1, 512, False),
        ('depsepconv', 3, 1, 512, False),
        ('depsepconv', 3, 1, 512, True),
        ('depsepconv', 3, 2, 1024, False),
        ('depsepconv', 3, 1, 1024, True),
169
170
171
172
173
174
175
176
177
178
179
180
    ]
}

"""
Architecture: https://arxiv.org/abs/1801.04381

"MobileNetV2: Inverted Residuals and Linear Bottlenecks"
Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
"""
MNV2_BLOCK_SPECS = {
    'spec_name': 'MobileNetV2',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
181
                          'expand_ratio', 'is_output'],
182
    'block_specs': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        ('convbn', 3, 2, 32, None, False),
        ('invertedbottleneck', 3, 1, 16, 1., False),
        ('invertedbottleneck', 3, 2, 24, 6., False),
        ('invertedbottleneck', 3, 1, 24, 6., True),
        ('invertedbottleneck', 3, 2, 32, 6., False),
        ('invertedbottleneck', 3, 1, 32, 6., False),
        ('invertedbottleneck', 3, 1, 32, 6., True),
        ('invertedbottleneck', 3, 2, 64, 6., False),
        ('invertedbottleneck', 3, 1, 64, 6., False),
        ('invertedbottleneck', 3, 1, 64, 6., False),
        ('invertedbottleneck', 3, 1, 64, 6., False),
        ('invertedbottleneck', 3, 1, 96, 6., False),
        ('invertedbottleneck', 3, 1, 96, 6., False),
        ('invertedbottleneck', 3, 1, 96, 6., True),
        ('invertedbottleneck', 3, 2, 160, 6., False),
        ('invertedbottleneck', 3, 1, 160, 6., False),
        ('invertedbottleneck', 3, 1, 160, 6., False),
        ('invertedbottleneck', 3, 1, 320, 6., True),
        ('convbn', 1, 1, 1280, None, False),
202
203
204
205
206
207
208
    ]
}

"""
Architecture: https://arxiv.org/abs/1905.02244

"Searching for MobileNetV3"
209
Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
210
211
212
213
214
215
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam
"""
MNV3Large_BLOCK_SPECS = {
    'spec_name': 'MobileNetV3Large',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'se_ratio', 'expand_ratio',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
216
                          'use_normalization', 'use_bias', 'is_output'],
217
    'block_specs': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        ('convbn', 3, 2, 16,
         'hard_swish', None, None, True, False, False),
        ('invertedbottleneck', 3, 1, 16,
         'relu', None, 1., None, False, False),
        ('invertedbottleneck', 3, 2, 24,
         'relu', None, 4., None, False, False),
        ('invertedbottleneck', 3, 1, 24,
         'relu', None, 3., None, False, True),
        ('invertedbottleneck', 5, 2, 40,
         'relu', 0.25, 3., None, False, False),
        ('invertedbottleneck', 5, 1, 40,
         'relu', 0.25, 3., None, False, False),
        ('invertedbottleneck', 5, 1, 40,
         'relu', 0.25, 3., None, False, True),
        ('invertedbottleneck', 3, 2, 80,
         'hard_swish', None, 6., None, False, False),
        ('invertedbottleneck', 3, 1, 80,
         'hard_swish', None, 2.5, None, False, False),
        ('invertedbottleneck', 3, 1, 80,
         'hard_swish', None, 2.3, None, False, False),
        ('invertedbottleneck', 3, 1, 80,
         'hard_swish', None, 2.3, None, False, False),
        ('invertedbottleneck', 3, 1, 112,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 3, 1, 112,
         'hard_swish', 0.25, 6., None, False, True),
        ('invertedbottleneck', 5, 2, 160,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 5, 1, 160,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 5, 1, 160,
         'hard_swish', 0.25, 6., None, False, True),
        ('convbn', 1, 1, 960,
         'hard_swish', None, None, True, False, False),
        ('gpooling', None, None, None,
         None, None, None, None, None, False),
        ('convbn', 1, 1, 1280,
         'hard_swish', None, None, False, True, False),
256
257
258
259
260
261
262
    ]
}

MNV3Small_BLOCK_SPECS = {
    'spec_name': 'MobileNetV3Small',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'se_ratio', 'expand_ratio',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
263
                          'use_normalization', 'use_bias', 'is_output'],
264
    'block_specs': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        ('convbn', 3, 2, 16,
         'hard_swish', None, None, True, False, False),
        ('invertedbottleneck', 3, 2, 16,
         'relu', 0.25, 1, None, False, True),
        ('invertedbottleneck', 3, 2, 24,
         'relu', None, 72. / 16, None, False, False),
        ('invertedbottleneck', 3, 1, 24,
         'relu', None, 88. / 24, None, False, True),
        ('invertedbottleneck', 5, 2, 40,
         'hard_swish', 0.25, 4., None, False, False),
        ('invertedbottleneck', 5, 1, 40,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 5, 1, 40,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 5, 1, 48,
         'hard_swish', 0.25, 3., None, False, False),
        ('invertedbottleneck', 5, 1, 48,
         'hard_swish', 0.25, 3., None, False, True),
        ('invertedbottleneck', 5, 2, 96,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 5, 1, 96,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 5, 1, 96,
         'hard_swish', 0.25, 6., None, False, True),
        ('convbn', 1, 1, 576,
         'hard_swish', None, None, True, False, False),
        ('gpooling', None, None, None,
         None, None, None, None, None, False),
        ('convbn', 1, 1, 1024,
         'hard_swish', None, None, False, True, False),
295
296
297
298
299
300
301
302
303
304
305
    ]
}

"""
The EdgeTPU version is taken from
github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v3.py
"""
MNV3EdgeTPU_BLOCK_SPECS = {
    'spec_name': 'MobileNetV3EdgeTPU',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'se_ratio', 'expand_ratio',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
306
                          'use_residual', 'use_depthwise', 'is_output'],
307
    'block_specs': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
        ('convbn', 3, 2, 32, 'relu', None, None, None, None, False),
        ('invertedbottleneck', 3, 1, 16, 'relu', None, 1., True, False, False),
        ('invertedbottleneck', 3, 2, 32, 'relu', None, 8., True, False, False),
        ('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False, False),
        ('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False, False),
        ('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False, True),
        ('invertedbottleneck', 3, 2, 48, 'relu', None, 8., True, False, False),
        ('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False, False),
        ('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False, False),
        ('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False, True),
        ('invertedbottleneck', 3, 2, 96, 'relu', None, 8., True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 8., False, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, True),
        ('invertedbottleneck', 5, 2, 160, 'relu', None, 8., True, True, False),
        ('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 3, 1, 192, 'relu', None, 8., True, True, True),
        ('convbn', 1, 1, 1280, 'relu', None, None, None, None, False),
332
333
334
    ]
}

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
335
336
337
338
339
340
341
342
343
344
"""
Architecture: https://arxiv.org/pdf/2008.08178.pdf

"Discovering Multi-Hardware Mobile Models via Architecture Search"
Grace Chu, Okan Arikan, Gabriel Bender, Weijun Wang,
Achille Brighton, Pieter-Jan Kindermans, Hanxiao Liu,
Berkin Akin, Suyog Gupta, and Andrew Howard
"""
MNMultiMAX_BLOCK_SPECS = {
    'spec_name': 'MobileNetMultiMAX',
Xianzhi Du's avatar
Xianzhi Du committed
345
346
347
348
    'block_spec_schema': [
        'block_fn', 'kernel_size', 'strides', 'filters', 'activation',
        'expand_ratio', 'use_normalization', 'use_bias', 'is_output'
    ],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
349
    'block_specs': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
        ('convbn', 3, 2, 32, 'relu', None, True, False, False),
        ('invertedbottleneck', 3, 2, 32, 'relu', 3., None, False, True),
        ('invertedbottleneck', 5, 2, 64, 'relu', 6., None, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False, True),
        ('invertedbottleneck', 5, 2, 128, 'relu', 6., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 4., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 6., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, True),
        ('invertedbottleneck', 3, 2, 160, 'relu', 6., None, False, False),
        ('invertedbottleneck', 5, 1, 160, 'relu', 4., None, False, False),
        ('invertedbottleneck', 3, 1, 160, 'relu', 5., None, False, False),
        ('invertedbottleneck', 5, 1, 160, 'relu', 4., None, False, True),
        ('convbn', 1, 1, 960, 'relu', None, True, False, False),
        ('gpooling', None, None, None, None, None, None, None, False),
Xianzhi Du's avatar
Xianzhi Du committed
367
368
369
        # Remove bias and add batch norm for the last layer to support QAT
        # and achieve slightly better accuracy.
        ('convbn', 1, 1, 1280, 'relu', None, True, False, False),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
370
371
372
373
374
    ]
}

MNMultiAVG_BLOCK_SPECS = {
    'spec_name': 'MobileNetMultiAVG',
Xianzhi Du's avatar
Xianzhi Du committed
375
376
377
378
    'block_spec_schema': [
        'block_fn', 'kernel_size', 'strides', 'filters', 'activation',
        'expand_ratio', 'use_normalization', 'use_bias', 'is_output'
    ],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
379
    'block_specs': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        ('convbn', 3, 2, 32, 'relu', None, True, False, False),
        ('invertedbottleneck', 3, 2, 32, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 32, 'relu', 2., None, False, True),
        ('invertedbottleneck', 5, 2, 64, 'relu', 5., None, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 3., None, False, True),
        ('invertedbottleneck', 5, 2, 128, 'relu', 6., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 160, 'relu', 6., None, False, False),
        ('invertedbottleneck', 3, 1, 160, 'relu', 4., None, False, True),
        ('invertedbottleneck', 3, 2, 192, 'relu', 6., None, False, False),
        ('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False, False),
        ('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False, False),
        ('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False, True),
        ('convbn', 1, 1, 960, 'relu', None, True, False, False),
        ('gpooling', None, None, None, None, None, None, None, False),
Xianzhi Du's avatar
Xianzhi Du committed
399
400
401
        # Remove bias and add batch norm for the last layer to support QAT
        # and achieve slightly better accuracy.
        ('convbn', 1, 1, 1280, 'relu', None, True, False, False),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
402
403
404
    ]
}

Yuqi Li's avatar
Yuqi Li committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
# Similar to MobileNetMultiAVG and used for segmentation task.
# Reduced the filters by a factor of 2 in the last block.
MNMultiAVG_SEG_BLOCK_SPECS = {
    'spec_name': 'MobileNetMultiAVGSeg',
    'block_spec_schema': [
        'block_fn', 'kernel_size', 'strides', 'filters', 'activation',
        'expand_ratio', 'use_normalization', 'use_bias', 'is_output'
    ],
    'block_specs': [
        ('convbn', 3, 2, 32, 'relu', None, True, False, False),
        ('invertedbottleneck', 3, 2, 32, 'relu', 3., True, False, False),
        ('invertedbottleneck', 3, 1, 32, 'relu', 2., True, False, True),
        ('invertedbottleneck', 5, 2, 64, 'relu', 5., True, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 3., True, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 2., True, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 3., True, False, True),
        ('invertedbottleneck', 5, 2, 128, 'relu', 6., True, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, False),
        ('invertedbottleneck', 3, 1, 160, 'relu', 6., True, False, False),
        ('invertedbottleneck', 3, 1, 160, 'relu', 4., True, False, True),
        ('invertedbottleneck', 3, 2, 192, 'relu', 6., True, False, False),
        ('invertedbottleneck', 5, 1, 96, 'relu', 2., True, False, False),
        ('invertedbottleneck', 5, 1, 96, 'relu', 4., True, False, False),
        ('invertedbottleneck', 5, 1, 96, 'relu', 4., True, False, True),
        ('convbn', 1, 1, 480, 'relu', None, True, False, False),
        ('gpooling', None, None, None, None, None, None, None, False),
        # Remove bias and add batch norm for the last layer to support QAT
        # and achieve slightly better accuracy.
        ('convbn', 1, 1, 1280, 'relu', None, True, False, False),
    ]
}

439
440
441
442
443
444
SUPPORTED_SPECS_MAP = {
    'MobileNetV1': MNV1_BLOCK_SPECS,
    'MobileNetV2': MNV2_BLOCK_SPECS,
    'MobileNetV3Large': MNV3Large_BLOCK_SPECS,
    'MobileNetV3Small': MNV3Small_BLOCK_SPECS,
    'MobileNetV3EdgeTPU': MNV3EdgeTPU_BLOCK_SPECS,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
445
446
    'MobileNetMultiMAX': MNMultiMAX_BLOCK_SPECS,
    'MobileNetMultiAVG': MNMultiAVG_BLOCK_SPECS,
Yuqi Li's avatar
Yuqi Li committed
447
    'MobileNetMultiAVGSeg': MNMultiAVG_SEG_BLOCK_SPECS,
448
449
450
}


451
@dataclasses.dataclass
452
class BlockSpec(hyperparams.Config):
453
454
  """A container class that specifies the block configuration for MobileNet."""

Fan Yang's avatar
Fan Yang committed
455
  block_fn: str = 'convbn'
456
457
458
459
460
  kernel_size: int = 3
  strides: int = 1
  filters: int = 32
  use_bias: bool = False
  use_normalization: bool = True
Fan Yang's avatar
Fan Yang committed
461
  activation: str = 'relu6'
Fan Yang's avatar
Fan Yang committed
462
  # Used for block type InvertedResConv.
463
  expand_ratio: Optional[float] = 6.
Fan Yang's avatar
Fan Yang committed
464
  # Used for block type InvertedResConv with SE.
465
466
467
  se_ratio: Optional[float] = None
  use_depthwise: bool = True
  use_residual: bool = True
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
468
  is_output: bool = True
469
470


Fan Yang's avatar
Fan Yang committed
471
472
473
474
475
476
def block_spec_decoder(
    specs: Dict[Any, Any],
    filter_size_scale: float,
    # Set to 1 for mobilenetv1.
    divisible_by: int = 8,
    finegrain_classification_mode: bool = True):
Fan Yang's avatar
Fan Yang committed
477
  """Decodes specs for a block.
478
479

  Args:
Fan Yang's avatar
Fan Yang committed
480
481
482
483
484
485
    specs: A `dict` specification of block specs of a mobilenet version.
    filter_size_scale: A `float` multiplier for the filter size for all
      convolution ops. The value must be greater than zero. Typical usage will
      be to set this value in (0, 1) to reduce the number of parameters or
      computation cost of the model.
    divisible_by: An `int` that ensures all inner dimensions are divisible by
486
      this number.
Fan Yang's avatar
Fan Yang committed
487
488
489
    finegrain_classification_mode: If True, the model will keep the last layer
      large even for small multipliers, following
      https://arxiv.org/abs/1801.04381.
490
491

  Returns:
Fan Yang's avatar
Fan Yang committed
492
    A list of `BlockSpec` that defines structure of the base network.
493
494
495
496
497
498
  """

  spec_name = specs['spec_name']
  block_spec_schema = specs['block_spec_schema']
  block_specs = specs['block_specs']

499
  if not block_specs:
500
501
    raise ValueError(
        'The block spec cannot be empty for {} !'.format(spec_name))
502
503
504
505
506
507
508
509
510
511
512
513
514
515

  if len(block_specs[0]) != len(block_spec_schema):
    raise ValueError('The block spec values {} do not match with '
                     'the schema {}'.format(block_specs[0], block_spec_schema))

  decoded_specs = []

  for s in block_specs:
    kw_s = dict(zip(block_spec_schema, s))
    decoded_specs.append(BlockSpec(**kw_s))

  # This adjustment applies to V2 and V3
  if (spec_name != 'MobileNetV1'
      and finegrain_classification_mode
516
      and filter_size_scale < 1.0):
Rebecca Chen's avatar
Rebecca Chen committed
517
    decoded_specs[-1].filters /= filter_size_scale  # pytype: disable=annotation-type-mismatch
518
519
520
521

  for ds in decoded_specs:
    if ds.filters:
      ds.filters = nn_layers.round_filters(filters=ds.filters,
522
                                           multiplier=filter_size_scale,
523
524
525
526
527
528
529
530
                                           divisor=divisible_by,
                                           min_depth=8)

  return decoded_specs


@tf.keras.utils.register_keras_serializable(package='Vision')
class MobileNet(tf.keras.Model):
Fan Yang's avatar
Fan Yang committed
531
532
533
534
535
536
  """Creates a MobileNet family model."""

  def __init__(
      self,
      model_id: str = 'MobileNetV2',
      filter_size_scale: float = 1.0,
Fan Yang's avatar
Fan Yang committed
537
      input_specs: tf.keras.layers.InputSpec = layers.InputSpec(
Fan Yang's avatar
Fan Yang committed
538
          shape=[None, None, None, 3]),
Fan Yang's avatar
Fan Yang committed
539
      # The followings are for hyper-parameter tuning.
Fan Yang's avatar
Fan Yang committed
540
541
542
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      kernel_initializer: str = 'VarianceScaling',
Fan Yang's avatar
Fan Yang committed
543
544
545
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      # The followings should be kept the same most of the times.
Rebecca Chen's avatar
Rebecca Chen committed
546
      output_stride: Optional[int] = None,
Fan Yang's avatar
Fan Yang committed
547
      min_depth: int = 8,
Fan Yang's avatar
Fan Yang committed
548
      # divisible is not used in MobileNetV1.
Fan Yang's avatar
Fan Yang committed
549
550
551
552
      divisible_by: int = 8,
      stochastic_depth_drop_rate: float = 0.0,
      regularize_depthwise: bool = False,
      use_sync_bn: bool = False,
Fan Yang's avatar
Fan Yang committed
553
      # finegrain is not used in MobileNetV1.
Fan Yang's avatar
Fan Yang committed
554
      finegrain_classification_mode: bool = True,
Yuqi Li's avatar
Yuqi Li committed
555
      output_intermediate_endpoints: bool = False,
Fan Yang's avatar
Fan Yang committed
556
557
      **kwargs):
    """Initializes a MobileNet model.
558
559

    Args:
Fan Yang's avatar
Fan Yang committed
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
      model_id: A `str` of MobileNet version. The supported values are
        `MobileNetV1`, `MobileNetV2`, `MobileNetV3Large`, `MobileNetV3Small`,
        and `MobileNetV3EdgeTPU`.
      filter_size_scale: A `float` of multiplier for the filters (number of
        channels) for all convolution ops. The value must be greater than zero.
        Typical usage will be to set this value in (0, 1) to reduce the number
        of parameters or computation cost of the model.
      input_specs: A `tf.keras.layers.InputSpec` of specs of the input tensor.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      kernel_initializer: A `str` for kernel initializer of convolutional
        layers.
      kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
575
        Default to None.
Fan Yang's avatar
Fan Yang committed
576
577
578
579
580
581
582
583
584
585
      output_stride: An `int` that specifies the requested ratio of input to
        output spatial resolution. If not None, then we invoke atrous
        convolution if necessary to prevent the network from reducing the
        spatial resolution of activation maps. Allowed values are 8 (accurate
        fully convolutional mode), 16 (fast fully convolutional mode), 32
        (classification mode).
      min_depth: An `int` of minimum depth (number of channels) for all
        convolution ops. Enforced when filter_size_scale < 1, and not an active
        constraint when filter_size_scale >= 1.
      divisible_by: An `int` that ensures all inner dimensions are divisible by
586
        this number.
Fan Yang's avatar
Fan Yang committed
587
588
589
590
591
592
      stochastic_depth_drop_rate: A `float` of drop rate for drop connect layer.
      regularize_depthwise: If Ture, apply regularization on depthwise.
      use_sync_bn: If True, use synchronized batch normalization.
      finegrain_classification_mode: If True, the model will keep the last layer
        large even for small multipliers, following
        https://arxiv.org/abs/1801.04381.
Yuqi Li's avatar
Yuqi Li committed
593
594
      output_intermediate_endpoints: A `bool` of whether or not output the
        intermediate endpoints.
Fan Yang's avatar
Fan Yang committed
595
      **kwargs: Additional keyword arguments to be passed.
596
597
598
599
600
    """
    if model_id not in SUPPORTED_SPECS_MAP:
      raise ValueError('The MobileNet version {} '
                       'is not supported'.format(model_id))

601
602
    if filter_size_scale <= 0:
      raise ValueError('filter_size_scale is not greater than zero.')
603
604
605
606
607
608
609
610
611
612
613

    if output_stride is not None:
      if model_id == 'MobileNetV1':
        if output_stride not in [8, 16, 32]:
          raise ValueError('Only allowed output_stride values are 8, 16, 32.')
      else:
        if output_stride == 0 or (output_stride > 1 and output_stride % 2):
          raise ValueError('Output stride must be None, 1 or a multiple of 2.')

    self._model_id = model_id
    self._input_specs = input_specs
614
    self._filter_size_scale = filter_size_scale
615
616
617
618
619
620
621
622
623
624
625
626
    self._min_depth = min_depth
    self._output_stride = output_stride
    self._divisible_by = divisible_by
    self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
    self._regularize_depthwise = regularize_depthwise
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._use_sync_bn = use_sync_bn
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._finegrain_classification_mode = finegrain_classification_mode
Yuqi Li's avatar
Yuqi Li committed
627
    self._output_intermediate_endpoints = output_intermediate_endpoints
628
629
630
631
632
633

    inputs = tf.keras.Input(shape=input_specs.shape[1:])

    block_specs = SUPPORTED_SPECS_MAP.get(model_id)
    self._decoded_specs = block_spec_decoder(
        specs=block_specs,
634
        filter_size_scale=self._filter_size_scale,
635
636
637
        divisible_by=self._get_divisible_by(),
        finegrain_classification_mode=self._finegrain_classification_mode)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
638
    x, endpoints, next_endpoint_level = self._mobilenet_base(inputs=inputs)
639
640

    self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}
Xianzhi Du's avatar
Xianzhi Du committed
641
642
    # Don't include the final layer in `self._output_specs` to support decoders.
    endpoints[str(next_endpoint_level)] = x
643
644
645
646
647
648
649
650
651
652
653
654

    super(MobileNet, self).__init__(
        inputs=inputs, outputs=endpoints, **kwargs)

  def _get_divisible_by(self):
    if self._model_id == 'MobileNetV1':
      return 1
    else:
      return self._divisible_by

  def _mobilenet_base(self,
                      inputs: tf.Tensor
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
655
                      ) -> Tuple[tf.Tensor, Dict[str, tf.Tensor], int]:
Fan Yang's avatar
Fan Yang committed
656
    """Builds the base MobileNet architecture.
657
658

    Args:
Fan Yang's avatar
Fan Yang committed
659
      inputs: A `tf.Tensor` of shape `[batch_size, height, width, channels]`.
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680

    Returns:
      A tuple of output Tensor and dictionary that collects endpoints.
    """

    input_shape = inputs.get_shape().as_list()
    if len(input_shape) != 4:
      raise ValueError('Expected rank 4 input, was: %d' % len(input_shape))

    # The current_stride variable keeps track of the output stride of the
    # activations, i.e., the running product of convolution strides up to the
    # current network layer. This allows us to invoke atrous convolution
    # whenever applying the next convolution would result in the activations
    # having output stride larger than the target output_stride.
    current_stride = 1

    # The atrous convolution rate parameter.
    rate = 1

    net = inputs
    endpoints = {}
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
681
    endpoint_level = 2
682
683
684
685
686
    for i, block_def in enumerate(self._decoded_specs):
      block_name = 'block_group_{}_{}'.format(block_def.block_fn, i)
      # A small catch for gpooling block with None strides
      if not block_def.strides:
        block_def.strides = 1
Fan Yang's avatar
Fan Yang committed
687
688
      if (self._output_stride is not None and
          current_stride == self._output_stride):
689
690
691
692
693
694
695
696
697
698
699
        # If we have reached the target output_stride, then we need to employ
        # atrous convolution with stride=1 and multiply the atrous rate by the
        # current unit's stride for use in subsequent layers.
        layer_stride = 1
        layer_rate = rate
        rate *= block_def.strides
      else:
        layer_stride = block_def.strides
        layer_rate = 1
        current_stride *= block_def.strides

Yuqi Li's avatar
Yuqi Li committed
700
      intermediate_endpoints = {}
701
702
      if block_def.block_fn == 'convbn':

703
        net = Conv2DBNBlock(
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
            filters=block_def.filters,
            kernel_size=block_def.kernel_size,
            strides=block_def.strides,
            activation=block_def.activation,
            use_bias=block_def.use_bias,
            use_normalization=block_def.use_normalization,
            kernel_initializer=self._kernel_initializer,
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer,
            use_sync_bn=self._use_sync_bn,
            norm_momentum=self._norm_momentum,
            norm_epsilon=self._norm_epsilon
        )(net)

      elif block_def.block_fn == 'depsepconv':
        net = nn_blocks.DepthwiseSeparableConvBlock(
            filters=block_def.filters,
            kernel_size=block_def.kernel_size,
Yuqi Li's avatar
Yuqi Li committed
722
            strides=layer_stride,
723
724
725
726
727
728
729
730
731
732
            activation=block_def.activation,
            dilation_rate=layer_rate,
            regularize_depthwise=self._regularize_depthwise,
            kernel_initializer=self._kernel_initializer,
            kernel_regularizer=self._kernel_regularizer,
            use_sync_bn=self._use_sync_bn,
            norm_momentum=self._norm_momentum,
            norm_epsilon=self._norm_epsilon,
        )(net)

733
      elif block_def.block_fn == 'invertedbottleneck':
734
735
736
737
738
739
740
741
742
743
        use_rate = rate
        if layer_rate > 1 and block_def.kernel_size != 1:
          # We will apply atrous rate in the following cases:
          # 1) When kernel_size is not in params, the operation then uses
          #   default kernel size 3x3.
          # 2) When kernel_size is in params, and if the kernel_size is not
          #   equal to (1, 1) (there is no need to apply atrous convolution to
          #   any 1x1 convolution).
          use_rate = layer_rate
        in_filters = net.shape.as_list()[-1]
Yuqi Li's avatar
Yuqi Li committed
744
        block = nn_blocks.InvertedBottleneckBlock(
745
746
747
748
749
750
            in_filters=in_filters,
            out_filters=block_def.filters,
            kernel_size=block_def.kernel_size,
            strides=layer_stride,
            expand_ratio=block_def.expand_ratio,
            se_ratio=block_def.se_ratio,
751
752
            expand_se_in_filters=True,
            se_gating_activation='hard_sigmoid',
753
754
755
756
757
758
759
760
761
762
763
764
            activation=block_def.activation,
            use_depthwise=block_def.use_depthwise,
            use_residual=block_def.use_residual,
            dilation_rate=use_rate,
            regularize_depthwise=self._regularize_depthwise,
            kernel_initializer=self._kernel_initializer,
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer,
            use_sync_bn=self._use_sync_bn,
            norm_momentum=self._norm_momentum,
            norm_epsilon=self._norm_epsilon,
            stochastic_depth_drop_rate=self._stochastic_depth_drop_rate,
Yuqi Li's avatar
Yuqi Li committed
765
766
767
768
769
770
771
            divisible_by=self._get_divisible_by(),
            output_intermediate_endpoints=self._output_intermediate_endpoints,
        )
        if self._output_intermediate_endpoints:
          net, intermediate_endpoints = block(net)
        else:
          net = block(net)
772
773

      elif block_def.block_fn == 'gpooling':
774
775
        net = layers.GlobalAveragePooling2D()(net)
        net = layers.Reshape((1, 1, net.shape[1]))(net)
776
777
778
779
780

      else:
        raise ValueError('Unknown block type {} for layer {}'.format(
            block_def.block_fn, i))

781
      net = tf.keras.layers.Activation('linear', name=block_name)(net)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
782
783
784

      if block_def.is_output:
        endpoints[str(endpoint_level)] = net
Yuqi Li's avatar
Yuqi Li committed
785
786
787
788
        for key, tensor in intermediate_endpoints.items():
          endpoints[str(endpoint_level) + '/' + key] = tensor
        if current_stride != self._output_stride:
          endpoint_level += 1
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
789

Yuqi Li's avatar
Yuqi Li committed
790
791
    if str(endpoint_level) in endpoints:
      endpoint_level += 1
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
792
    return net, endpoints, endpoint_level
793
794
795
796

  def get_config(self):
    config_dict = {
        'model_id': self._model_id,
797
        'filter_size_scale': self._filter_size_scale,
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
        'min_depth': self._min_depth,
        'output_stride': self._output_stride,
        'divisible_by': self._divisible_by,
        'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
        'regularize_depthwise': self._regularize_depthwise,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon,
        'finegrain_classification_mode': self._finegrain_classification_mode,
    }
    return config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def output_specs(self):
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs
Shixin Luo's avatar
Shixin Luo committed
821

822

Shixin Luo's avatar
Shixin Luo committed
823
824
825
@factory.register_backbone_builder('mobilenet')
def build_mobilenet(
    input_specs: tf.keras.layers.InputSpec,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
826
827
    backbone_config: hyperparams.Config,
    norm_activation_config: hyperparams.Config,
Rebecca Chen's avatar
Rebecca Chen committed
828
829
    l2_regularizer: Optional[tf.keras.regularizers.Regularizer] = None
) -> tf.keras.Model:
Fan Yang's avatar
Fan Yang committed
830
  """Builds MobileNet backbone from a config."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
831
832
  backbone_type = backbone_config.type
  backbone_cfg = backbone_config.get()
Shixin Luo's avatar
Shixin Luo committed
833
  assert backbone_type == 'mobilenet', (f'Inconsistent backbone type '
834
                                        f'{backbone_type}')
Shixin Luo's avatar
Shixin Luo committed
835
836
837

  return MobileNet(
      model_id=backbone_cfg.model_id,
838
      filter_size_scale=backbone_cfg.filter_size_scale,
Shixin Luo's avatar
Shixin Luo committed
839
840
      input_specs=input_specs,
      stochastic_depth_drop_rate=backbone_cfg.stochastic_depth_drop_rate,
Yuqi Li's avatar
Yuqi Li committed
841
842
      output_stride=backbone_cfg.output_stride,
      output_intermediate_endpoints=backbone_cfg.output_intermediate_endpoints,
Shixin Luo's avatar
Shixin Luo committed
843
844
845
846
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)