mobilenet.py 31.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Fan Yang's avatar
Fan Yang committed
15
"""Contains definitions of MobileNet Networks."""
16

Fan Yang's avatar
Fan Yang committed
17
from typing import Optional, Dict, Any, Tuple
18
19

# Import libraries
20
import dataclasses
21
import tensorflow as tf
22
from official.modeling import hyperparams
23
from official.modeling import tf_utils
Shixin Luo's avatar
Shixin Luo committed
24
from official.vision.beta.modeling.backbones import factory
25
26
27
28
29
30
from official.vision.beta.modeling.layers import nn_blocks
from official.vision.beta.modeling.layers import nn_layers

layers = tf.keras.layers
regularizers = tf.keras.regularizers

31

32
33
34
#  pylint: disable=pointless-string-statement


35
36
class Conv2DBNBlock(tf.keras.layers.Layer):
  """A convolution block with batch normalization."""
37

38
39
40
41
42
43
  def __init__(
      self,
      filters: int,
      kernel_size: int = 3,
      strides: int = 1,
      use_bias: bool = False,
Fan Yang's avatar
Fan Yang committed
44
45
      activation: str = 'relu6',
      kernel_initializer: str = 'VarianceScaling',
46
47
48
49
50
51
52
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      use_normalization: bool = True,
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      **kwargs):
53
    """A convolution block with batch normalization.
54

55
    Args:
Fan Yang's avatar
Fan Yang committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
      filters: An `int` number of filters for the first two convolutions. Note
        that the third and final convolution will use 4 times as many filters.
      kernel_size: An `int` specifying the height and width of the 2D
        convolution window.
      strides: An `int` of block stride. If greater than 1, this block will
        ultimately downsample the input.
      use_bias: If True, use bias in the convolution layer.
      activation: A `str` name of the activation function.
      kernel_initializer: A `str` for kernel initializer of convolutional
        layers.
      kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
        Default to None.
      use_normalization: If True, use batch normalization.
      use_sync_bn: If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      **kwargs: Additional keyword arguments to be passed.
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    """
    super(Conv2DBNBlock, self).__init__(**kwargs)
    self._filters = filters
    self._kernel_size = kernel_size
    self._strides = strides
    self._activation = activation
    self._use_bias = use_bias
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._use_normalization = use_normalization
    self._use_sync_bn = use_sync_bn
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    if use_sync_bn:
      self._norm = tf.keras.layers.experimental.SyncBatchNormalization
    else:
      self._norm = tf.keras.layers.BatchNormalization
    if tf.keras.backend.image_data_format() == 'channels_last':
      self._bn_axis = -1
    else:
      self._bn_axis = 1
    self._activation_fn = tf_utils.get_activation(activation)

  def get_config(self):
    config = {
        'filters': self._filters,
        'strides': self._strides,
        'kernel_size': self._kernel_size,
        'use_bias': self._use_bias,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'activation': self._activation,
        'use_sync_bn': self._use_sync_bn,
        'use_normalization': self._use_normalization,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon
    }
    base_config = super(Conv2DBNBlock, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def build(self, input_shape):
    self._conv0 = tf.keras.layers.Conv2D(
        filters=self._filters,
        kernel_size=self._kernel_size,
        strides=self._strides,
        padding='same',
        use_bias=self._use_bias,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)
    if self._use_normalization:
      self._norm0 = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon)

    super(Conv2DBNBlock, self).build(input_shape)

  def call(self, inputs, training=None):
    x = self._conv0(inputs)
    if self._use_normalization:
      x = self._norm0(x)
    return self._activation_fn(x)
141
142
143
144

"""
Architecture: https://arxiv.org/abs/1704.04861.

145
146
147
"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications" Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
"""
MNV1_BLOCK_SPECS = {
    'spec_name': 'MobileNetV1',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters'],
    'block_specs': [
        ('convbn', 3, 2, 32),
        ('depsepconv', 3, 1, 64),
        ('depsepconv', 3, 2, 128),
        ('depsepconv', 3, 1, 128),
        ('depsepconv', 3, 2, 256),
        ('depsepconv', 3, 1, 256),
        ('depsepconv', 3, 2, 512),
        ('depsepconv', 3, 1, 512),
        ('depsepconv', 3, 1, 512),
        ('depsepconv', 3, 1, 512),
        ('depsepconv', 3, 1, 512),
        ('depsepconv', 3, 1, 512),
        ('depsepconv', 3, 2, 1024),
        ('depsepconv', 3, 1, 1024),
    ]
}

"""
Architecture: https://arxiv.org/abs/1801.04381

"MobileNetV2: Inverted Residuals and Linear Bottlenecks"
Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
"""
MNV2_BLOCK_SPECS = {
    'spec_name': 'MobileNetV2',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'expand_ratio'],
    'block_specs': [
        ('convbn', 3, 2, 32, None),
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        ('invertedbottleneck', 3, 1, 16, 1.),
        ('invertedbottleneck', 3, 2, 24, 6.),
        ('invertedbottleneck', 3, 1, 24, 6.),
        ('invertedbottleneck', 3, 2, 32, 6.),
        ('invertedbottleneck', 3, 1, 32, 6.),
        ('invertedbottleneck', 3, 1, 32, 6.),
        ('invertedbottleneck', 3, 2, 64, 6.),
        ('invertedbottleneck', 3, 1, 64, 6.),
        ('invertedbottleneck', 3, 1, 64, 6.),
        ('invertedbottleneck', 3, 1, 64, 6.),
        ('invertedbottleneck', 3, 1, 96, 6.),
        ('invertedbottleneck', 3, 1, 96, 6.),
        ('invertedbottleneck', 3, 1, 96, 6.),
        ('invertedbottleneck', 3, 2, 160, 6.),
        ('invertedbottleneck', 3, 1, 160, 6.),
        ('invertedbottleneck', 3, 1, 160, 6.),
        ('invertedbottleneck', 3, 1, 320, 6.),
199
        ('convbn', 1, 1, 1280, None),
200
201
202
203
204
205
206
    ]
}

"""
Architecture: https://arxiv.org/abs/1905.02244

"Searching for MobileNetV3"
207
Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
208
209
210
211
212
213
214
215
216
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam
"""
MNV3Large_BLOCK_SPECS = {
    'spec_name': 'MobileNetV3Large',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'se_ratio', 'expand_ratio',
                          'use_normalization', 'use_bias'],
    'block_specs': [
        ('convbn', 3, 2, 16, 'hard_swish', None, None, True, False),
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        ('invertedbottleneck', 3, 1, 16, 'relu', None, 1., None, False),
        ('invertedbottleneck', 3, 2, 24, 'relu', None, 4., None, False),
        ('invertedbottleneck', 3, 1, 24, 'relu', None, 3., None, False),
        ('invertedbottleneck', 5, 2, 40, 'relu', 0.25, 3., None, False),
        ('invertedbottleneck', 5, 1, 40, 'relu', 0.25, 3., None, False),
        ('invertedbottleneck', 5, 1, 40, 'relu', 0.25, 3., None, False),
        ('invertedbottleneck', 3, 2, 80, 'hard_swish', None, 6., None, False),
        ('invertedbottleneck', 3, 1, 80, 'hard_swish', None, 2.5, None, False),
        ('invertedbottleneck', 3, 1, 80, 'hard_swish', None, 2.3, None, False),
        ('invertedbottleneck', 3, 1, 80, 'hard_swish', None, 2.3, None, False),
        ('invertedbottleneck', 3, 1, 112, 'hard_swish', 0.25, 6., None, False),
        ('invertedbottleneck', 3, 1, 112, 'hard_swish', 0.25, 6., None, False),
        ('invertedbottleneck', 5, 2, 160, 'hard_swish', 0.25, 6., None, False),
        ('invertedbottleneck', 5, 1, 160, 'hard_swish', 0.25, 6., None, False),
        ('invertedbottleneck', 5, 1, 160, 'hard_swish', 0.25, 6., None, False),
232
233
234
235
236
237
238
239
240
241
242
243
244
        ('convbn', 1, 1, 960, 'hard_swish', None, None, True, False),
        ('gpooling', None, None, None, None, None, None, None, None),
        ('convbn', 1, 1, 1280, 'hard_swish', None, None, False, True),
    ]
}

MNV3Small_BLOCK_SPECS = {
    'spec_name': 'MobileNetV3Small',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'se_ratio', 'expand_ratio',
                          'use_normalization', 'use_bias'],
    'block_specs': [
        ('convbn', 3, 2, 16, 'hard_swish', None, None, True, False),
245
246
247
248
249
250
251
252
253
254
255
        ('invertedbottleneck', 3, 2, 16, 'relu', 0.25, 1, None, False),
        ('invertedbottleneck', 3, 2, 24, 'relu', None, 72. / 16, None, False),
        ('invertedbottleneck', 3, 1, 24, 'relu', None, 88. / 24, None, False),
        ('invertedbottleneck', 5, 2, 40, 'hard_swish', 0.25, 4., None, False),
        ('invertedbottleneck', 5, 1, 40, 'hard_swish', 0.25, 6., None, False),
        ('invertedbottleneck', 5, 1, 40, 'hard_swish', 0.25, 6., None, False),
        ('invertedbottleneck', 5, 1, 48, 'hard_swish', 0.25, 3., None, False),
        ('invertedbottleneck', 5, 1, 48, 'hard_swish', 0.25, 3., None, False),
        ('invertedbottleneck', 5, 2, 96, 'hard_swish', 0.25, 6., None, False),
        ('invertedbottleneck', 5, 1, 96, 'hard_swish', 0.25, 6., None, False),
        ('invertedbottleneck', 5, 1, 96, 'hard_swish', 0.25, 6., None, False),
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        ('convbn', 1, 1, 576, 'hard_swish', None, None, True, False),
        ('gpooling', None, None, None, None, None, None, None, None),
        ('convbn', 1, 1, 1024, 'hard_swish', None, None, False, True),
    ]
}

"""
The EdgeTPU version is taken from
github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v3.py
"""
MNV3EdgeTPU_BLOCK_SPECS = {
    'spec_name': 'MobileNetV3EdgeTPU',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'se_ratio', 'expand_ratio',
                          'use_residual', 'use_depthwise'],
    'block_specs': [
        ('convbn', 3, 2, 32, 'relu', None, None, None, None),
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        ('invertedbottleneck', 3, 1, 16, 'relu', None, 1., True, False),
        ('invertedbottleneck', 3, 2, 32, 'relu', None, 8., True, False),
        ('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False),
        ('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False),
        ('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False),
        ('invertedbottleneck', 3, 2, 48, 'relu', None, 8., True, False),
        ('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False),
        ('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False),
        ('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False),
        ('invertedbottleneck', 3, 2, 96, 'relu', None, 8., True, True),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 8., False, True),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True),
        ('invertedbottleneck', 5, 2, 160, 'relu', None, 8., True, True),
        ('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True),
        ('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True),
        ('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True),
        ('invertedbottleneck', 3, 1, 192, 'relu', None, 8., True, True),
295
296
297
298
        ('convbn', 1, 1, 1280, 'relu', None, None, None, None),
    ]
}

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
"""
Architecture: https://arxiv.org/pdf/2008.08178.pdf

"Discovering Multi-Hardware Mobile Models via Architecture Search"
Grace Chu, Okan Arikan, Gabriel Bender, Weijun Wang,
Achille Brighton, Pieter-Jan Kindermans, Hanxiao Liu,
Berkin Akin, Suyog Gupta, and Andrew Howard
"""
MNMultiMAX_BLOCK_SPECS = {
    'spec_name': 'MobileNetMultiMAX',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'expand_ratio',
                          'use_normalization', 'use_bias'],
    'block_specs': [
        ('convbn', 3, 2, 32, 'relu', None, True, False),
        ('invertedbottleneck', 3, 2, 32, 'relu', 3., None, False),
        ('invertedbottleneck', 5, 2, 64, 'relu', 6., None, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False),
        ('invertedbottleneck', 5, 2, 128, 'relu', 6., None, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 4., None, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 6., None, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False),
        ('invertedbottleneck', 3, 2, 160, 'relu', 6., None, False),
        ('invertedbottleneck', 5, 1, 160, 'relu', 4., None, False),
        ('invertedbottleneck', 3, 1, 160, 'relu', 5., None, False),
        ('invertedbottleneck', 5, 1, 160, 'relu', 4., None, False),
        ('convbn', 1, 1, 960, 'relu', None, True, False),
        ('gpooling', None, None, None, None, None, None, None),
        ('convbn', 1, 1, 1280, 'relu', None, False, True),
    ]
}

MNMultiAVG_BLOCK_SPECS = {
    'spec_name': 'MobileNetMultiAVG',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'expand_ratio',
                          'use_normalization', 'use_bias'],
    'block_specs': [
        ('convbn', 3, 2, 32, 'relu', None, True, False),
        ('invertedbottleneck', 3, 2, 32, 'relu', 3., None, False),
        ('invertedbottleneck', 3, 1, 32, 'relu', 2., None, False),
        ('invertedbottleneck', 5, 2, 64, 'relu', 5., None, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 3., None, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 3., None, False),
        ('invertedbottleneck', 5, 2, 128, 'relu', 6., None, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False),
        ('invertedbottleneck', 3, 1, 160, 'relu', 6., None, False),
        ('invertedbottleneck', 3, 1, 160, 'relu', 4., None, False),
        ('invertedbottleneck', 3, 2, 192, 'relu', 6., None, False),
        ('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False),
        ('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False),
        ('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False),
        ('convbn', 1, 1, 960, 'relu', None, True, False),
        ('gpooling', None, None, None, None, None, None, None),
        ('convbn', 1, 1, 1280, 'relu', None, False, True),
    ]
}

363
364
365
366
367
368
SUPPORTED_SPECS_MAP = {
    'MobileNetV1': MNV1_BLOCK_SPECS,
    'MobileNetV2': MNV2_BLOCK_SPECS,
    'MobileNetV3Large': MNV3Large_BLOCK_SPECS,
    'MobileNetV3Small': MNV3Small_BLOCK_SPECS,
    'MobileNetV3EdgeTPU': MNV3EdgeTPU_BLOCK_SPECS,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
369
370
    'MobileNetMultiMAX': MNMultiMAX_BLOCK_SPECS,
    'MobileNetMultiAVG': MNMultiAVG_BLOCK_SPECS,
371
372
373
}


374
@dataclasses.dataclass
375
class BlockSpec(hyperparams.Config):
376
377
  """A container class that specifies the block configuration for MobileNet."""

Fan Yang's avatar
Fan Yang committed
378
  block_fn: str = 'convbn'
379
380
381
382
383
  kernel_size: int = 3
  strides: int = 1
  filters: int = 32
  use_bias: bool = False
  use_normalization: bool = True
Fan Yang's avatar
Fan Yang committed
384
  activation: str = 'relu6'
385
386
387
388
389
390
  # used for block type InvertedResConv
  expand_ratio: Optional[float] = 6.
  # used for block type InvertedResConv with SE
  se_ratio: Optional[float] = None
  use_depthwise: bool = True
  use_residual: bool = True
391
392


393
394
def block_spec_decoder(specs: Dict[Any, Any],
                       filter_size_scale: float,
395
396
397
                       # set to 1 for mobilenetv1
                       divisible_by: int = 8,
                       finegrain_classification_mode: bool = True):
Fan Yang's avatar
Fan Yang committed
398
  """Decodes specs for a block.
399
400

  Args:
Fan Yang's avatar
Fan Yang committed
401
402
403
404
405
406
    specs: A `dict` specification of block specs of a mobilenet version.
    filter_size_scale: A `float` multiplier for the filter size for all
      convolution ops. The value must be greater than zero. Typical usage will
      be to set this value in (0, 1) to reduce the number of parameters or
      computation cost of the model.
    divisible_by: An `int` that ensures all inner dimensions are divisible by
407
      this number.
Fan Yang's avatar
Fan Yang committed
408
409
410
    finegrain_classification_mode: If True, the model will keep the last layer
      large even for small multipliers, following
      https://arxiv.org/abs/1801.04381.
411
412

  Returns:
Fan Yang's avatar
Fan Yang committed
413
    A list of `BlockSpec` that defines structure of the base network.
414
415
416
417
418
419
  """

  spec_name = specs['spec_name']
  block_spec_schema = specs['block_spec_schema']
  block_specs = specs['block_specs']

420
  if not block_specs:
421
422
    raise ValueError(
        'The block spec cannot be empty for {} !'.format(spec_name))
423
424
425
426
427
428
429
430
431
432
433
434
435
436

  if len(block_specs[0]) != len(block_spec_schema):
    raise ValueError('The block spec values {} do not match with '
                     'the schema {}'.format(block_specs[0], block_spec_schema))

  decoded_specs = []

  for s in block_specs:
    kw_s = dict(zip(block_spec_schema, s))
    decoded_specs.append(BlockSpec(**kw_s))

  # This adjustment applies to V2 and V3
  if (spec_name != 'MobileNetV1'
      and finegrain_classification_mode
437
438
      and filter_size_scale < 1.0):
    decoded_specs[-1].filters /= filter_size_scale
439
440
441
442

  for ds in decoded_specs:
    if ds.filters:
      ds.filters = nn_layers.round_filters(filters=ds.filters,
443
                                           multiplier=filter_size_scale,
444
445
446
447
448
449
450
451
                                           divisor=divisible_by,
                                           min_depth=8)

  return decoded_specs


@tf.keras.utils.register_keras_serializable(package='Vision')
class MobileNet(tf.keras.Model):
Fan Yang's avatar
Fan Yang committed
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
  """Creates a MobileNet family model."""

  def __init__(
      self,
      model_id: str = 'MobileNetV2',
      filter_size_scale: float = 1.0,
      input_specs: layers.InputSpec = layers.InputSpec(
          shape=[None, None, None, 3]),
      # The followings are for hyper-parameter tuning
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      kernel_initializer: str = 'VarianceScaling',
      kernel_regularizer: Optional[regularizers.Regularizer] = None,
      bias_regularizer: Optional[regularizers.Regularizer] = None,
      # The followings should be kept the same most of the times
      output_stride: int = None,
      min_depth: int = 8,
      # divisible is not used in MobileNetV1
      divisible_by: int = 8,
      stochastic_depth_drop_rate: float = 0.0,
      regularize_depthwise: bool = False,
      use_sync_bn: bool = False,
      # finegrain is not used in MobileNetV1
      finegrain_classification_mode: bool = True,
      **kwargs):
    """Initializes a MobileNet model.
478
479

    Args:
Fan Yang's avatar
Fan Yang committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
      model_id: A `str` of MobileNet version. The supported values are
        `MobileNetV1`, `MobileNetV2`, `MobileNetV3Large`, `MobileNetV3Small`,
        and `MobileNetV3EdgeTPU`.
      filter_size_scale: A `float` of multiplier for the filters (number of
        channels) for all convolution ops. The value must be greater than zero.
        Typical usage will be to set this value in (0, 1) to reduce the number
        of parameters or computation cost of the model.
      input_specs: A `tf.keras.layers.InputSpec` of specs of the input tensor.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      kernel_initializer: A `str` for kernel initializer of convolutional
        layers.
      kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
495
        Default to None.
Fan Yang's avatar
Fan Yang committed
496
497
498
499
500
501
502
503
504
505
      output_stride: An `int` that specifies the requested ratio of input to
        output spatial resolution. If not None, then we invoke atrous
        convolution if necessary to prevent the network from reducing the
        spatial resolution of activation maps. Allowed values are 8 (accurate
        fully convolutional mode), 16 (fast fully convolutional mode), 32
        (classification mode).
      min_depth: An `int` of minimum depth (number of channels) for all
        convolution ops. Enforced when filter_size_scale < 1, and not an active
        constraint when filter_size_scale >= 1.
      divisible_by: An `int` that ensures all inner dimensions are divisible by
506
        this number.
Fan Yang's avatar
Fan Yang committed
507
508
509
510
511
512
513
      stochastic_depth_drop_rate: A `float` of drop rate for drop connect layer.
      regularize_depthwise: If Ture, apply regularization on depthwise.
      use_sync_bn: If True, use synchronized batch normalization.
      finegrain_classification_mode: If True, the model will keep the last layer
        large even for small multipliers, following
        https://arxiv.org/abs/1801.04381.
      **kwargs: Additional keyword arguments to be passed.
514
515
516
517
518
    """
    if model_id not in SUPPORTED_SPECS_MAP:
      raise ValueError('The MobileNet version {} '
                       'is not supported'.format(model_id))

519
520
    if filter_size_scale <= 0:
      raise ValueError('filter_size_scale is not greater than zero.')
521
522
523
524
525
526
527
528
529
530
531

    if output_stride is not None:
      if model_id == 'MobileNetV1':
        if output_stride not in [8, 16, 32]:
          raise ValueError('Only allowed output_stride values are 8, 16, 32.')
      else:
        if output_stride == 0 or (output_stride > 1 and output_stride % 2):
          raise ValueError('Output stride must be None, 1 or a multiple of 2.')

    self._model_id = model_id
    self._input_specs = input_specs
532
    self._filter_size_scale = filter_size_scale
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
    self._min_depth = min_depth
    self._output_stride = output_stride
    self._divisible_by = divisible_by
    self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
    self._regularize_depthwise = regularize_depthwise
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._use_sync_bn = use_sync_bn
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._finegrain_classification_mode = finegrain_classification_mode

    inputs = tf.keras.Input(shape=input_specs.shape[1:])

    block_specs = SUPPORTED_SPECS_MAP.get(model_id)
    self._decoded_specs = block_spec_decoder(
        specs=block_specs,
551
        filter_size_scale=self._filter_size_scale,
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
        divisible_by=self._get_divisible_by(),
        finegrain_classification_mode=self._finegrain_classification_mode)

    x, endpoints = self._mobilenet_base(inputs=inputs)

    endpoints[max(endpoints.keys()) + 1] = x
    self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}

    super(MobileNet, self).__init__(
        inputs=inputs, outputs=endpoints, **kwargs)

  def _get_divisible_by(self):
    if self._model_id == 'MobileNetV1':
      return 1
    else:
      return self._divisible_by

  def _mobilenet_base(self,
                      inputs: tf.Tensor
571
                      ) -> Tuple[tf.Tensor, Dict[int, tf.Tensor]]:
Fan Yang's avatar
Fan Yang committed
572
    """Builds the base MobileNet architecture.
573
574

    Args:
Fan Yang's avatar
Fan Yang committed
575
      inputs: A `tf.Tensor` of shape `[batch_size, height, width, channels]`.
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617

    Returns:
      A tuple of output Tensor and dictionary that collects endpoints.
    """

    input_shape = inputs.get_shape().as_list()
    if len(input_shape) != 4:
      raise ValueError('Expected rank 4 input, was: %d' % len(input_shape))

    # The current_stride variable keeps track of the output stride of the
    # activations, i.e., the running product of convolution strides up to the
    # current network layer. This allows us to invoke atrous convolution
    # whenever applying the next convolution would result in the activations
    # having output stride larger than the target output_stride.
    current_stride = 1

    # The atrous convolution rate parameter.
    rate = 1

    net = inputs
    endpoints = {}
    endpoint_level = 1
    for i, block_def in enumerate(self._decoded_specs):
      block_name = 'block_group_{}_{}'.format(block_def.block_fn, i)
      # A small catch for gpooling block with None strides
      if not block_def.strides:
        block_def.strides = 1
      if self._output_stride is not None \
          and current_stride == self._output_stride:
        # If we have reached the target output_stride, then we need to employ
        # atrous convolution with stride=1 and multiply the atrous rate by the
        # current unit's stride for use in subsequent layers.
        layer_stride = 1
        layer_rate = rate
        rate *= block_def.strides
      else:
        layer_stride = block_def.strides
        layer_rate = 1
        current_stride *= block_def.strides

      if block_def.block_fn == 'convbn':

618
        net = Conv2DBNBlock(
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
            filters=block_def.filters,
            kernel_size=block_def.kernel_size,
            strides=block_def.strides,
            activation=block_def.activation,
            use_bias=block_def.use_bias,
            use_normalization=block_def.use_normalization,
            kernel_initializer=self._kernel_initializer,
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer,
            use_sync_bn=self._use_sync_bn,
            norm_momentum=self._norm_momentum,
            norm_epsilon=self._norm_epsilon
        )(net)

      elif block_def.block_fn == 'depsepconv':
        net = nn_blocks.DepthwiseSeparableConvBlock(
            filters=block_def.filters,
            kernel_size=block_def.kernel_size,
            strides=block_def.strides,
            activation=block_def.activation,
            dilation_rate=layer_rate,
            regularize_depthwise=self._regularize_depthwise,
            kernel_initializer=self._kernel_initializer,
            kernel_regularizer=self._kernel_regularizer,
            use_sync_bn=self._use_sync_bn,
            norm_momentum=self._norm_momentum,
            norm_epsilon=self._norm_epsilon,
        )(net)

648
      elif block_def.block_fn == 'invertedbottleneck':
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
        use_rate = rate
        if layer_rate > 1 and block_def.kernel_size != 1:
          # We will apply atrous rate in the following cases:
          # 1) When kernel_size is not in params, the operation then uses
          #   default kernel size 3x3.
          # 2) When kernel_size is in params, and if the kernel_size is not
          #   equal to (1, 1) (there is no need to apply atrous convolution to
          #   any 1x1 convolution).
          use_rate = layer_rate
        in_filters = net.shape.as_list()[-1]
        net = nn_blocks.InvertedBottleneckBlock(
            in_filters=in_filters,
            out_filters=block_def.filters,
            kernel_size=block_def.kernel_size,
            strides=layer_stride,
            expand_ratio=block_def.expand_ratio,
            se_ratio=block_def.se_ratio,
666
667
            expand_se_in_filters=True,
            se_gating_activation='hard_sigmoid',
668
669
670
671
672
673
674
675
676
677
678
679
            activation=block_def.activation,
            use_depthwise=block_def.use_depthwise,
            use_residual=block_def.use_residual,
            dilation_rate=use_rate,
            regularize_depthwise=self._regularize_depthwise,
            kernel_initializer=self._kernel_initializer,
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer,
            use_sync_bn=self._use_sync_bn,
            norm_momentum=self._norm_momentum,
            norm_epsilon=self._norm_epsilon,
            stochastic_depth_drop_rate=self._stochastic_depth_drop_rate,
680
            divisible_by=self._get_divisible_by()
681
682
683
        )(net)

      elif block_def.block_fn == 'gpooling':
684
685
        net = layers.GlobalAveragePooling2D()(net)
        net = layers.Reshape((1, 1, net.shape[1]))(net)
686
687
688
689
690
691
692
693
694
695
696
697
698

      else:
        raise ValueError('Unknown block type {} for layer {}'.format(
            block_def.block_fn, i))

      endpoints[endpoint_level] = net
      endpoint_level += 1
      net = tf.identity(net, name=block_name)
    return net, endpoints

  def get_config(self):
    config_dict = {
        'model_id': self._model_id,
699
        'filter_size_scale': self._filter_size_scale,
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
        'min_depth': self._min_depth,
        'output_stride': self._output_stride,
        'divisible_by': self._divisible_by,
        'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
        'regularize_depthwise': self._regularize_depthwise,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon,
        'finegrain_classification_mode': self._finegrain_classification_mode,
    }
    return config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def output_specs(self):
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs
Shixin Luo's avatar
Shixin Luo committed
723

724

Shixin Luo's avatar
Shixin Luo committed
725
726
727
728
729
@factory.register_backbone_builder('mobilenet')
def build_mobilenet(
    input_specs: tf.keras.layers.InputSpec,
    model_config,
    l2_regularizer: tf.keras.regularizers.Regularizer = None) -> tf.keras.Model:
Fan Yang's avatar
Fan Yang committed
730
  """Builds MobileNet backbone from a config."""
Shixin Luo's avatar
Shixin Luo committed
731
732
733
734
  backbone_type = model_config.backbone.type
  backbone_cfg = model_config.backbone.get()
  norm_activation_config = model_config.norm_activation
  assert backbone_type == 'mobilenet', (f'Inconsistent backbone type '
735
                                        f'{backbone_type}')
Shixin Luo's avatar
Shixin Luo committed
736
737
738

  return MobileNet(
      model_id=backbone_cfg.model_id,
739
      filter_size_scale=backbone_cfg.filter_size_scale,
Shixin Luo's avatar
Shixin Luo committed
740
741
742
743
744
745
      input_specs=input_specs,
      stochastic_depth_drop_rate=backbone_cfg.stochastic_depth_drop_rate,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)