bert_modeling.py 32.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The main BERT model and related functions."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import math
import tensorflow as tf

25
from tensorflow.python.util import deprecation
26
from official.modeling import tf_utils
27
from official.nlp.bert import configs
Chen Chen's avatar
Chen Chen committed
28
29


30
@deprecation.deprecated(None, "The function should not be used any more.")
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def get_bert_model(input_word_ids,
                   input_mask,
                   input_type_ids,
                   config=None,
                   name=None,
                   float_type=tf.float32):
  """Wraps the core BERT model as a keras.Model."""
  bert_model_layer = BertModel(config=config, float_type=float_type, name=name)
  pooled_output, sequence_output = bert_model_layer(input_word_ids, input_mask,
                                                    input_type_ids)
  bert_model = tf.keras.Model(
      inputs=[input_word_ids, input_mask, input_type_ids],
      outputs=[pooled_output, sequence_output])
  return bert_model


class BertModel(tf.keras.layers.Layer):
  """BERT model ("Bidirectional Encoder Representations from Transformers").

  Example usage:

  ```python
  # Already been converted into WordPiece token ids
  input_word_ids = tf.constant([[31, 51, 99], [15, 5, 0]])
  input_mask = tf.constant([[1, 1, 1], [1, 1, 0]])
  input_type_ids = tf.constant([[0, 0, 1], [0, 2, 0]])

58
  config = configs.BertConfig(vocab_size=32000, hidden_size=512,
59
60
61
62
63
64
65
66
67
68
    num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)

  pooled_output, sequence_output = modeling.BertModel(config=config)(
    input_word_ids=input_word_ids,
    input_mask=input_mask,
    input_type_ids=input_type_ids)
  ...
  ```
  """

69
70
  @deprecation.deprecated(
      None, "Please use `nlp.modeling.networks.TransformerEncoder` instead.")
71
72
73
  def __init__(self, config, float_type=tf.float32, **kwargs):
    super(BertModel, self).__init__(**kwargs)
    self.config = (
74
        configs.BertConfig.from_dict(config)
75
76
77
78
        if isinstance(config, dict) else copy.deepcopy(config))
    self.float_type = float_type

  def build(self, unused_input_shapes):
79
    """Implements build() for the layer."""
80
81
82
83
    self.embedding_lookup = EmbeddingLookup(
        vocab_size=self.config.vocab_size,
        embedding_size=self.config.hidden_size,
        initializer_range=self.config.initializer_range,
84
        dtype=tf.float32,
85
86
87
88
89
90
91
92
        name="word_embeddings")
    self.embedding_postprocessor = EmbeddingPostprocessor(
        use_type_embeddings=True,
        token_type_vocab_size=self.config.type_vocab_size,
        use_position_embeddings=True,
        max_position_embeddings=self.config.max_position_embeddings,
        dropout_prob=self.config.hidden_dropout_prob,
        initializer_range=self.config.initializer_range,
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
93
        dtype=tf.float32,
94
95
96
97
98
99
100
101
102
103
104
        name="embedding_postprocessor")
    self.encoder = Transformer(
        num_hidden_layers=self.config.num_hidden_layers,
        hidden_size=self.config.hidden_size,
        num_attention_heads=self.config.num_attention_heads,
        intermediate_size=self.config.intermediate_size,
        intermediate_activation=self.config.hidden_act,
        hidden_dropout_prob=self.config.hidden_dropout_prob,
        attention_probs_dropout_prob=self.config.attention_probs_dropout_prob,
        initializer_range=self.config.initializer_range,
        backward_compatible=self.config.backward_compatible,
105
        float_type=self.float_type,
106
107
108
109
110
111
112
113
114
115
116
117
118
        name="encoder")
    self.pooler_transform = tf.keras.layers.Dense(
        units=self.config.hidden_size,
        activation="tanh",
        kernel_initializer=get_initializer(self.config.initializer_range),
        name="pooler_transform")
    super(BertModel, self).build(unused_input_shapes)

  def __call__(self,
               input_word_ids,
               input_mask=None,
               input_type_ids=None,
               **kwargs):
119
    inputs = tf_utils.pack_inputs([input_word_ids, input_mask, input_type_ids])
120
121
    return super(BertModel, self).__call__(inputs, **kwargs)

122
123
124
125
126
127
  def call(self, inputs, mode="bert"):
    """Implements call() for the layer.

    Args:
      inputs: packed input tensors.
      mode: string, `bert` or `encoder`.
128

129
130
131
132
133
    Returns:
      Output tensor of the last layer for BERT training (mode=`bert`) which
      is a float Tensor of shape [batch_size, seq_length, hidden_size] or
      a list of output tensors for encoder usage (mode=`encoder`).
    """
134
    unpacked_inputs = tf_utils.unpack_inputs(inputs)
135
136
137
138
139
140
141
    input_word_ids = unpacked_inputs[0]
    input_mask = unpacked_inputs[1]
    input_type_ids = unpacked_inputs[2]

    word_embeddings = self.embedding_lookup(input_word_ids)
    embedding_tensor = self.embedding_postprocessor(
        word_embeddings=word_embeddings, token_type_ids=input_type_ids)
142
143
    if self.float_type == tf.float16:
      embedding_tensor = tf.cast(embedding_tensor, tf.float16)
144
145
146
147
148
    attention_mask = None
    if input_mask is not None:
      attention_mask = create_attention_mask_from_input_mask(
          input_word_ids, input_mask)

149
150
151
    if mode == "encoder":
      return self.encoder(
          embedding_tensor, attention_mask, return_all_layers=True)
152

153
154
    sequence_output = self.encoder(embedding_tensor, attention_mask)
    first_token_tensor = tf.squeeze(sequence_output[:, 0:1, :], axis=1)
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    pooled_output = self.pooler_transform(first_token_tensor)

    return (pooled_output, sequence_output)

  def get_config(self):
    config = {"config": self.config.to_dict()}
    base_config = super(BertModel, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))


class EmbeddingLookup(tf.keras.layers.Layer):
  """Looks up words embeddings for id tensor."""

  def __init__(self,
               vocab_size,
               embedding_size=768,
               initializer_range=0.02,
               **kwargs):
    super(EmbeddingLookup, self).__init__(**kwargs)
    self.vocab_size = vocab_size
    self.embedding_size = embedding_size
    self.initializer_range = initializer_range

  def build(self, unused_input_shapes):
179
    """Implements build() for the layer."""
180
181
182
183
184
185
186
187
    self.embeddings = self.add_weight(
        "embeddings",
        shape=[self.vocab_size, self.embedding_size],
        initializer=get_initializer(self.initializer_range),
        dtype=self.dtype)
    super(EmbeddingLookup, self).build(unused_input_shapes)

  def call(self, inputs):
188
    """Implements call() for the layer."""
189
    input_shape = tf_utils.get_shape_list(inputs)
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    flat_input = tf.reshape(inputs, [-1])
    output = tf.gather(self.embeddings, flat_input)
    output = tf.reshape(output, input_shape + [self.embedding_size])
    return output


class EmbeddingPostprocessor(tf.keras.layers.Layer):
  """Performs various post-processing on a word embedding tensor."""

  def __init__(self,
               use_type_embeddings=False,
               token_type_vocab_size=None,
               use_position_embeddings=True,
               max_position_embeddings=512,
               dropout_prob=0.0,
               initializer_range=0.02,
206
               initializer=None,
207
208
209
210
211
212
213
214
215
               **kwargs):
    super(EmbeddingPostprocessor, self).__init__(**kwargs)
    self.use_type_embeddings = use_type_embeddings
    self.token_type_vocab_size = token_type_vocab_size
    self.use_position_embeddings = use_position_embeddings
    self.max_position_embeddings = max_position_embeddings
    self.dropout_prob = dropout_prob
    self.initializer_range = initializer_range

216
217
218
219
220
    if not initializer:
      self.initializer = get_initializer(self.initializer_range)
    else:
      self.initializer = initializer

221
222
223
224
225
    if self.use_type_embeddings and not self.token_type_vocab_size:
      raise ValueError("If `use_type_embeddings` is True, then "
                       "`token_type_vocab_size` must be specified.")

  def build(self, input_shapes):
226
    """Implements build() for the layer."""
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    (word_embeddings_shape, _) = input_shapes
    width = word_embeddings_shape.as_list()[-1]
    self.type_embeddings = None
    if self.use_type_embeddings:
      self.type_embeddings = self.add_weight(
          "type_embeddings",
          shape=[self.token_type_vocab_size, width],
          initializer=get_initializer(self.initializer_range),
          dtype=self.dtype)

    self.position_embeddings = None
    if self.use_position_embeddings:
      self.position_embeddings = self.add_weight(
          "position_embeddings",
          shape=[self.max_position_embeddings, width],
          initializer=get_initializer(self.initializer_range),
          dtype=self.dtype)

    self.output_layer_norm = tf.keras.layers.LayerNormalization(
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
246
        name="layer_norm", axis=-1, epsilon=1e-12, dtype=tf.float32)
247
248
    self.output_dropout = tf.keras.layers.Dropout(
        rate=self.dropout_prob, dtype=tf.float32)
249
250
251
    super(EmbeddingPostprocessor, self).build(input_shapes)

  def __call__(self, word_embeddings, token_type_ids=None, **kwargs):
252
    inputs = tf_utils.pack_inputs([word_embeddings, token_type_ids])
253
254
255
    return super(EmbeddingPostprocessor, self).__call__(inputs, **kwargs)

  def call(self, inputs):
256
    """Implements call() for the layer."""
257
    unpacked_inputs = tf_utils.unpack_inputs(inputs)
258
259
    word_embeddings = unpacked_inputs[0]
    token_type_ids = unpacked_inputs[1]
260
    input_shape = tf_utils.get_shape_list(word_embeddings, expected_rank=3)
261
262
263
264
265
266
267
    batch_size = input_shape[0]
    seq_length = input_shape[1]
    width = input_shape[2]

    output = word_embeddings
    if self.use_type_embeddings:
      flat_token_type_ids = tf.reshape(token_type_ids, [-1])
268
269
      token_type_embeddings = tf.gather(self.type_embeddings,
                                        flat_token_type_ids)
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
      token_type_embeddings = tf.reshape(token_type_embeddings,
                                         [batch_size, seq_length, width])
      output += token_type_embeddings

    if self.use_position_embeddings:
      position_embeddings = tf.expand_dims(
          tf.slice(self.position_embeddings, [0, 0], [seq_length, width]),
          axis=0)

      output += position_embeddings

    output = self.output_layer_norm(output)
    output = self.output_dropout(output)

    return output


class Attention(tf.keras.layers.Layer):
  """Performs multi-headed attention from `from_tensor` to `to_tensor`.

  This is an implementation of multi-headed attention based on "Attention
  is all you Need". If `from_tensor` and `to_tensor` are the same, then
  this is self-attention. Each timestep in `from_tensor` attends to the
  corresponding sequence in `to_tensor`, and returns a fixed-with vector.

  This function first projects `from_tensor` into a "query" tensor and
  `to_tensor` into "key" and "value" tensors. These are (effectively) a list
  of tensors of length `num_attention_heads`, where each tensor is of shape
  [batch_size, seq_length, size_per_head].

  Then, the query and key tensors are dot-producted and scaled. These are
  softmaxed to obtain attention probabilities. The value tensors are then
  interpolated by these probabilities, then concatenated back to a single
  tensor and returned.

  In practice, the multi-headed attention are done with tf.einsum as follows:
    Input_tensor: [BFD]
    Wq, Wk, Wv: [DNH]
    Q:[BFNH] = einsum('BFD,DNH->BFNH', Input_tensor, Wq)
    K:[BTNH] = einsum('BTD,DNH->BTNH', Input_tensor, Wk)
    V:[BTNH] = einsum('BTD,DNH->BTNH', Input_tensor, Wv)
311
    attention_scores:[BNFT] = einsum('BTNH,BFNH->BNFT', K, Q) / sqrt(H)
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    attention_probs:[BNFT] = softmax(attention_scores)
    context_layer:[BFNH] = einsum('BNFT,BTNH->BFNH', attention_probs, V)
    Wout:[DNH]
    Output:[BFD] = einsum('BFNH,DNH>BFD', context_layer, Wout)
  """

  def __init__(self,
               num_attention_heads=12,
               size_per_head=64,
               attention_probs_dropout_prob=0.0,
               initializer_range=0.02,
               backward_compatible=False,
               **kwargs):
    super(Attention, self).__init__(**kwargs)
    self.num_attention_heads = num_attention_heads
    self.size_per_head = size_per_head
    self.attention_probs_dropout_prob = attention_probs_dropout_prob
    self.initializer_range = initializer_range
    self.backward_compatible = backward_compatible

  def build(self, unused_input_shapes):
333
    """Implements build() for the layer."""
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    self.query_dense = self._projection_dense_layer("query")
    self.key_dense = self._projection_dense_layer("key")
    self.value_dense = self._projection_dense_layer("value")
    self.attention_probs_dropout = tf.keras.layers.Dropout(
        rate=self.attention_probs_dropout_prob)
    super(Attention, self).build(unused_input_shapes)

  def reshape_to_matrix(self, input_tensor):
    """Reshape N > 2 rank tensor to rank 2 tensor for performance."""
    ndims = input_tensor.shape.ndims
    if ndims < 2:
      raise ValueError("Input tensor must have at least rank 2."
                       "Shape = %s" % (input_tensor.shape))
    if ndims == 2:
      return input_tensor

    width = input_tensor.shape[-1]
    output_tensor = tf.reshape(input_tensor, [-1, width])
    return output_tensor

  def __call__(self, from_tensor, to_tensor, attention_mask=None, **kwargs):
355
    inputs = tf_utils.pack_inputs([from_tensor, to_tensor, attention_mask])
356
357
358
    return super(Attention, self).__call__(inputs, **kwargs)

  def call(self, inputs):
359
    """Implements call() for the layer."""
360
    (from_tensor, to_tensor, attention_mask) = tf_utils.unpack_inputs(inputs)
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

    # Scalar dimensions referenced here:
    #   B = batch size (number of sequences)
    #   F = `from_tensor` sequence length
    #   T = `to_tensor` sequence length
    #   N = `num_attention_heads`
    #   H = `size_per_head`
    # `query_tensor` = [B, F, N ,H]
    query_tensor = self.query_dense(from_tensor)

    # `key_tensor` = [B, T, N, H]
    key_tensor = self.key_dense(to_tensor)

    # `value_tensor` = [B, T, N, H]
    value_tensor = self.value_dense(to_tensor)

    # Take the dot product between "query" and "key" to get the raw
    # attention scores.
379
    attention_scores = tf.einsum("BTNH,BFNH->BNFT", key_tensor, query_tensor)
380
381
382
383
384
385
386
387
388
389
    attention_scores = tf.multiply(attention_scores,
                                   1.0 / math.sqrt(float(self.size_per_head)))

    if attention_mask is not None:
      # `attention_mask` = [B, 1, F, T]
      attention_mask = tf.expand_dims(attention_mask, axis=[1])

      # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
      # masked positions, this operation will create a tensor which is 0.0 for
      # positions we want to attend and -10000.0 for masked positions.
390
      adder = (1.0 - tf.cast(attention_mask, attention_scores.dtype)) * -10000.0
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

      # Since we are adding it to the raw scores before the softmax, this is
      # effectively the same as removing these entirely.
      attention_scores += adder

    # Normalize the attention scores to probabilities.
    # `attention_probs` = [B, N, F, T]
    attention_probs = tf.nn.softmax(attention_scores)

    # This is actually dropping out entire tokens to attend to, which might
    # seem a bit unusual, but is taken from the original Transformer paper.
    attention_probs = self.attention_probs_dropout(attention_probs)

    # `context_layer` = [B, F, N, H]
    context_tensor = tf.einsum("BNFT,BTNH->BFNH", attention_probs, value_tensor)

    return context_tensor

  def _projection_dense_layer(self, name):
410
    """A helper to define a projection layer."""
411
412
413
414
415
416
417
418
419
420
    return Dense3D(
        num_attention_heads=self.num_attention_heads,
        size_per_head=self.size_per_head,
        kernel_initializer=get_initializer(self.initializer_range),
        output_projection=False,
        backward_compatible=self.backward_compatible,
        name=name)


class Dense3D(tf.keras.layers.Layer):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
421
422
423
424
425
426
427
428
429
430
431
432
433
434
  """A Dense Layer using 3D kernel with tf.einsum implementation.

  Attributes:
    num_attention_heads: An integer, number of attention heads for each
      multihead attention layer.
    size_per_head: An integer, hidden size per attention head.
    hidden_size: An integer, dimension of the hidden layer.
    kernel_initializer: An initializer for the kernel weight.
    bias_initializer: An initializer for the bias.
    activation: An activation function to use. If nothing is specified, no
      activation is applied.
    use_bias: A bool, whether the layer uses a bias.
    output_projection: A bool, whether the Dense3D layer is used for output
      linear projection.
435
436
    backward_compatible: A bool, whether the variables shape are compatible with
      checkpoints converted from TF 1.x.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
437
  """
438
439
440
441
442
443
444

  def __init__(self,
               num_attention_heads=12,
               size_per_head=72,
               kernel_initializer=None,
               bias_initializer="zeros",
               activation=None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
445
               use_bias=True,
446
447
448
               output_projection=False,
               backward_compatible=False,
               **kwargs):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
449
    """Inits Dense3D."""
450
451
452
453
454
455
456
    super(Dense3D, self).__init__(**kwargs)
    self.num_attention_heads = num_attention_heads
    self.size_per_head = size_per_head
    self.hidden_size = num_attention_heads * size_per_head
    self.kernel_initializer = kernel_initializer
    self.bias_initializer = bias_initializer
    self.activation = activation
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
457
    self.use_bias = use_bias
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
    self.output_projection = output_projection
    self.backward_compatible = backward_compatible

  @property
  def compatible_kernel_shape(self):
    if self.output_projection:
      return [self.hidden_size, self.hidden_size]
    return [self.last_dim, self.hidden_size]

  @property
  def compatible_bias_shape(self):
    return [self.hidden_size]

  @property
  def kernel_shape(self):
    if self.output_projection:
      return [self.num_attention_heads, self.size_per_head, self.hidden_size]
    return [self.last_dim, self.num_attention_heads, self.size_per_head]

  @property
  def bias_shape(self):
    if self.output_projection:
      return [self.hidden_size]
    return [self.num_attention_heads, self.size_per_head]

  def build(self, input_shape):
484
    """Implements build() for the layer."""
485
486
    dtype = tf.as_dtype(self.dtype or tf.keras.backend.floatx())
    if not (dtype.is_floating or dtype.is_complex):
487
488
      raise TypeError("Unable to build `Dense3D` layer with non-floating "
                      "point (and non-complex) dtype %s" % (dtype,))
489
490
    input_shape = tf.TensorShape(input_shape)
    if tf.compat.dimension_value(input_shape[-1]) is None:
491
      raise ValueError("The last dimension of the inputs to `Dense3D` "
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
                       "should be defined. Found `None`.")
    self.last_dim = tf.compat.dimension_value(input_shape[-1])
    self.input_spec = tf.keras.layers.InputSpec(
        min_ndim=3, axes={-1: self.last_dim})
    # Determines variable shapes.
    if self.backward_compatible:
      kernel_shape = self.compatible_kernel_shape
      bias_shape = self.compatible_bias_shape
    else:
      kernel_shape = self.kernel_shape
      bias_shape = self.bias_shape

    self.kernel = self.add_weight(
        "kernel",
        shape=kernel_shape,
        initializer=self.kernel_initializer,
        dtype=self.dtype,
        trainable=True)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
510
511
512
513
514
515
516
517
518
    if self.use_bias:
      self.bias = self.add_weight(
          "bias",
          shape=bias_shape,
          initializer=self.bias_initializer,
          dtype=self.dtype,
          trainable=True)
    else:
      self.bias = None
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
    super(Dense3D, self).build(input_shape)

  def call(self, inputs):
    """Implements ``call()`` for Dense3D.

    Args:
      inputs: A float tensor of shape [batch_size, sequence_length, hidden_size]
        when output_projection is False, otherwise a float tensor of shape
        [batch_size, sequence_length, num_heads, dim_per_head].

    Returns:
      The projected tensor with shape [batch_size, sequence_length, num_heads,
        dim_per_head] when output_projection is False, otherwise [batch_size,
        sequence_length, hidden_size].
    """
    if self.backward_compatible:
      kernel = tf.keras.backend.reshape(self.kernel, self.kernel_shape)
536
537
538
      bias = (
          tf.keras.backend.reshape(self.bias, self.bias_shape)
          if self.use_bias else None)
539
540
541
542
543
544
545
546
    else:
      kernel = self.kernel
      bias = self.bias

    if self.output_projection:
      ret = tf.einsum("abcd,cde->abe", inputs, kernel)
    else:
      ret = tf.einsum("abc,cde->abde", inputs, kernel)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
547
548
    if self.use_bias:
      ret += bias
549
550
551
552
553
554
555
556
557
558
559
560
561
    if self.activation is not None:
      return self.activation(ret)
    return ret


class Dense2DProjection(tf.keras.layers.Layer):
  """A 2D projection layer with tf.einsum implementation."""

  def __init__(self,
               output_size,
               kernel_initializer=None,
               bias_initializer="zeros",
               activation=None,
562
               fp32_activation=False,
563
564
565
566
567
568
               **kwargs):
    super(Dense2DProjection, self).__init__(**kwargs)
    self.output_size = output_size
    self.kernel_initializer = kernel_initializer
    self.bias_initializer = bias_initializer
    self.activation = activation
569
    self.fp32_activation = fp32_activation
570
571

  def build(self, input_shape):
572
    """Implements build() for the layer."""
573
574
    dtype = tf.as_dtype(self.dtype or tf.keras.backend.floatx())
    if not (dtype.is_floating or dtype.is_complex):
575
576
      raise TypeError("Unable to build `Dense2DProjection` layer with "
                      "non-floating point (and non-complex) "
577
578
579
                      "dtype %s" % (dtype,))
    input_shape = tf.TensorShape(input_shape)
    if tf.compat.dimension_value(input_shape[-1]) is None:
580
581
582
      raise ValueError("The last dimension of the inputs to "
                       "`Dense2DProjection` should be defined. "
                       "Found `None`.")
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
    last_dim = tf.compat.dimension_value(input_shape[-1])
    self.input_spec = tf.keras.layers.InputSpec(min_ndim=3, axes={-1: last_dim})
    self.kernel = self.add_weight(
        "kernel",
        shape=[last_dim, self.output_size],
        initializer=self.kernel_initializer,
        dtype=self.dtype,
        trainable=True)
    self.bias = self.add_weight(
        "bias",
        shape=[self.output_size],
        initializer=self.bias_initializer,
        dtype=self.dtype,
        trainable=True)
    super(Dense2DProjection, self).build(input_shape)

  def call(self, inputs):
    """Implements call() for Dense2DProjection.

    Args:
      inputs: float Tensor of shape [batch, from_seq_length,
        num_attention_heads, size_per_head].

    Returns:
      A 3D Tensor.
    """
    ret = tf.einsum("abc,cd->abd", inputs, self.kernel)
    ret += self.bias
    if self.activation is not None:
612
613
      if self.dtype == tf.float16 and self.fp32_activation:
        ret = tf.cast(ret, tf.float32)
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
      return self.activation(ret)
    return ret


class TransformerBlock(tf.keras.layers.Layer):
  """Single transformer layer.

  It has two sub-layers. The first is a multi-head self-attention mechanism, and
  the second is a positionwise fully connected feed-forward network.
  """

  def __init__(self,
               hidden_size=768,
               num_attention_heads=12,
               intermediate_size=3072,
               intermediate_activation="gelu",
               hidden_dropout_prob=0.0,
               attention_probs_dropout_prob=0.0,
               initializer_range=0.02,
               backward_compatible=False,
634
               float_type=tf.float32,
635
636
637
638
639
               **kwargs):
    super(TransformerBlock, self).__init__(**kwargs)
    self.hidden_size = hidden_size
    self.num_attention_heads = num_attention_heads
    self.intermediate_size = intermediate_size
640
641
    self.intermediate_activation = tf_utils.get_activation(
        intermediate_activation)
642
643
644
645
    self.hidden_dropout_prob = hidden_dropout_prob
    self.attention_probs_dropout_prob = attention_probs_dropout_prob
    self.initializer_range = initializer_range
    self.backward_compatible = backward_compatible
646
    self.float_type = float_type
647
648
649
650
651
652
653
654

    if self.hidden_size % self.num_attention_heads != 0:
      raise ValueError(
          "The hidden size (%d) is not a multiple of the number of attention "
          "heads (%d)" % (self.hidden_size, self.num_attention_heads))
    self.attention_head_size = int(self.hidden_size / self.num_attention_heads)

  def build(self, unused_input_shapes):
655
    """Implements build() for the layer."""
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
    self.attention_layer = Attention(
        num_attention_heads=self.num_attention_heads,
        size_per_head=self.attention_head_size,
        attention_probs_dropout_prob=self.attention_probs_dropout_prob,
        initializer_range=self.initializer_range,
        backward_compatible=self.backward_compatible,
        name="self_attention")
    self.attention_output_dense = Dense3D(
        num_attention_heads=self.num_attention_heads,
        size_per_head=int(self.hidden_size / self.num_attention_heads),
        kernel_initializer=get_initializer(self.initializer_range),
        output_projection=True,
        backward_compatible=self.backward_compatible,
        name="self_attention_output")
    self.attention_dropout = tf.keras.layers.Dropout(
        rate=self.hidden_dropout_prob)
    self.attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
674
675
676
            name="self_attention_layer_norm",
            axis=-1,
            epsilon=1e-12,
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
677
678
            # We do layer norm in float32 for numeric stability.
            dtype=tf.float32))
679
680
681
682
    self.intermediate_dense = Dense2DProjection(
        output_size=self.intermediate_size,
        kernel_initializer=get_initializer(self.initializer_range),
        activation=self.intermediate_activation,
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
683
        # Uses float32 so that gelu activation is done in float32.
684
        fp32_activation=True,
685
686
687
688
689
690
691
        name="intermediate")
    self.output_dense = Dense2DProjection(
        output_size=self.hidden_size,
        kernel_initializer=get_initializer(self.initializer_range),
        name="output")
    self.output_dropout = tf.keras.layers.Dropout(rate=self.hidden_dropout_prob)
    self.output_layer_norm = tf.keras.layers.LayerNormalization(
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
692
        name="output_layer_norm", axis=-1, epsilon=1e-12, dtype=tf.float32)
693
694
    super(TransformerBlock, self).build(unused_input_shapes)

695
696
697
698
699
700
701
702
703
  def common_layers(self):
    """Explicitly gets all layer objects inside a Transformer encoder block."""
    return [
        self.attention_layer, self.attention_output_dense,
        self.attention_dropout, self.attention_layer_norm,
        self.intermediate_dense, self.output_dense, self.output_dropout,
        self.output_layer_norm
    ]

704
  def __call__(self, input_tensor, attention_mask=None, **kwargs):
705
    inputs = tf_utils.pack_inputs([input_tensor, attention_mask])
706
    return super(TransformerBlock, self).__call__(inputs, **kwargs)
707
708

  def call(self, inputs):
709
    """Implements call() for the layer."""
710
    (input_tensor, attention_mask) = tf_utils.unpack_inputs(inputs)
711
712
713
714
715
716
    attention_output = self.attention_layer(
        from_tensor=input_tensor,
        to_tensor=input_tensor,
        attention_mask=attention_mask)
    attention_output = self.attention_output_dense(attention_output)
    attention_output = self.attention_dropout(attention_output)
717
718
    # Use float32 in keras layer norm and the gelu activation in the
    # intermediate dense layer for numeric stability
719
720
    attention_output = self.attention_layer_norm(input_tensor +
                                                 attention_output)
721
722
    if self.float_type == tf.float16:
      attention_output = tf.cast(attention_output, tf.float16)
723
    intermediate_output = self.intermediate_dense(attention_output)
724
725
    if self.float_type == tf.float16:
      intermediate_output = tf.cast(intermediate_output, tf.float16)
726
727
    layer_output = self.output_dense(intermediate_output)
    layer_output = self.output_dropout(layer_output)
728
    # Use float32 in keras layer norm for numeric stability
729
    layer_output = self.output_layer_norm(layer_output + attention_output)
730
731
    if self.float_type == tf.float16:
      layer_output = tf.cast(layer_output, tf.float16)
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
    return layer_output


class Transformer(tf.keras.layers.Layer):
  """Multi-headed, multi-layer Transformer from "Attention is All You Need".

  This is almost an exact implementation of the original Transformer encoder.

  See the original paper:
  https://arxiv.org/abs/1706.03762

  Also see:
  https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py
  """

  def __init__(self,
               num_hidden_layers=12,
               hidden_size=768,
               num_attention_heads=12,
               intermediate_size=3072,
               intermediate_activation="gelu",
               hidden_dropout_prob=0.0,
               attention_probs_dropout_prob=0.0,
               initializer_range=0.02,
               backward_compatible=False,
757
               float_type=tf.float32,
758
759
760
761
762
763
               **kwargs):
    super(Transformer, self).__init__(**kwargs)
    self.num_hidden_layers = num_hidden_layers
    self.hidden_size = hidden_size
    self.num_attention_heads = num_attention_heads
    self.intermediate_size = intermediate_size
764
765
    self.intermediate_activation = tf_utils.get_activation(
        intermediate_activation)
766
767
768
769
    self.hidden_dropout_prob = hidden_dropout_prob
    self.attention_probs_dropout_prob = attention_probs_dropout_prob
    self.initializer_range = initializer_range
    self.backward_compatible = backward_compatible
770
    self.float_type = float_type
771
772

  def build(self, unused_input_shapes):
773
    """Implements build() for the layer."""
774
775
776
777
778
779
780
781
782
783
784
785
    self.layers = []
    for i in range(self.num_hidden_layers):
      self.layers.append(
          TransformerBlock(
              hidden_size=self.hidden_size,
              num_attention_heads=self.num_attention_heads,
              intermediate_size=self.intermediate_size,
              intermediate_activation=self.intermediate_activation,
              hidden_dropout_prob=self.hidden_dropout_prob,
              attention_probs_dropout_prob=self.attention_probs_dropout_prob,
              initializer_range=self.initializer_range,
              backward_compatible=self.backward_compatible,
786
              float_type=self.float_type,
787
788
789
              name=("layer_%d" % i)))
    super(Transformer, self).build(unused_input_shapes)

790
  def __call__(self, input_tensor, attention_mask=None, **kwargs):
791
    inputs = tf_utils.pack_inputs([input_tensor, attention_mask])
792
    return super(Transformer, self).__call__(inputs=inputs, **kwargs)
793

794
795
796
797
798
799
800
  def call(self, inputs, return_all_layers=False):
    """Implements call() for the layer.

    Args:
      inputs: packed inputs.
      return_all_layers: bool, whether to return outputs of all layers inside
        encoders.
801

802
803
804
    Returns:
      Output tensor of the last layer or a list of output tensors.
    """
805
    unpacked_inputs = tf_utils.unpack_inputs(inputs)
806
807
808
809
    input_tensor = unpacked_inputs[0]
    attention_mask = unpacked_inputs[1]
    output_tensor = input_tensor

810
    all_layer_outputs = []
811
812
    for layer in self.layers:
      output_tensor = layer(output_tensor, attention_mask)
813
814
815
816
817
818
      all_layer_outputs.append(output_tensor)

    if return_all_layers:
      return all_layer_outputs

    return all_layer_outputs[-1]
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842


def get_initializer(initializer_range=0.02):
  """Creates a `tf.initializers.truncated_normal` with the given range.

  Args:
    initializer_range: float, initializer range for stddev.

  Returns:
    TruncatedNormal initializer with stddev = `initializer_range`.
  """
  return tf.keras.initializers.TruncatedNormal(stddev=initializer_range)


def create_attention_mask_from_input_mask(from_tensor, to_mask):
  """Create 3D attention mask from a 2D tensor mask.

  Args:
    from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
    to_mask: int32 Tensor of shape [batch_size, to_seq_length].

  Returns:
    float Tensor of shape [batch_size, from_seq_length, to_seq_length].
  """
843
  from_shape = tf_utils.get_shape_list(from_tensor, expected_rank=[2, 3])
844
845
846
  batch_size = from_shape[0]
  from_seq_length = from_shape[1]

847
  to_shape = tf_utils.get_shape_list(to_mask, expected_rank=2)
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
  to_seq_length = to_shape[1]

  to_mask = tf.cast(
      tf.reshape(to_mask, [batch_size, 1, to_seq_length]),
      dtype=from_tensor.dtype)

  # We don't assume that `from_tensor` is a mask (although it could be). We
  # don't actually care if we attend *from* padding tokens (only *to* padding)
  # tokens so we create a tensor of all ones.
  #
  # `broadcast_ones` = [batch_size, from_seq_length, 1]
  broadcast_ones = tf.ones(
      shape=[batch_size, from_seq_length, 1], dtype=from_tensor.dtype)

  # Here we broadcast along two dimensions to create the mask.
  mask = broadcast_ones * to_mask

  return mask