bert_modeling.py 37.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The main BERT model and related functions."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import json
import math
import six
import tensorflow as tf

27
from tensorflow.python.util import deprecation
28
29
from official.modeling import tf_utils

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

class BertConfig(object):
  """Configuration for `BertModel`."""

  def __init__(self,
               vocab_size,
               hidden_size=768,
               num_hidden_layers=12,
               num_attention_heads=12,
               intermediate_size=3072,
               hidden_act="gelu",
               hidden_dropout_prob=0.1,
               attention_probs_dropout_prob=0.1,
               max_position_embeddings=512,
               type_vocab_size=16,
               initializer_range=0.02,
               backward_compatible=True):
    """Constructs BertConfig.

    Args:
      vocab_size: Vocabulary size of `inputs_ids` in `BertModel`.
      hidden_size: Size of the encoder layers and the pooler layer.
      num_hidden_layers: Number of hidden layers in the Transformer encoder.
      num_attention_heads: Number of attention heads for each attention layer in
        the Transformer encoder.
      intermediate_size: The size of the "intermediate" (i.e., feed-forward)
        layer in the Transformer encoder.
      hidden_act: The non-linear activation function (function or string) in the
        encoder and pooler.
      hidden_dropout_prob: The dropout probability for all fully connected
        layers in the embeddings, encoder, and pooler.
      attention_probs_dropout_prob: The dropout ratio for the attention
        probabilities.
      max_position_embeddings: The maximum sequence length that this model might
        ever be used with. Typically set this to something large just in case
        (e.g., 512 or 1024 or 2048).
      type_vocab_size: The vocabulary size of the `token_type_ids` passed into
        `BertModel`.
      initializer_range: The stdev of the truncated_normal_initializer for
        initializing all weight matrices.
      backward_compatible: Boolean, whether the variables shape are compatible
        with checkpoints converted from TF 1.x BERT.
    """
    self.vocab_size = vocab_size
    self.hidden_size = hidden_size
    self.num_hidden_layers = num_hidden_layers
    self.num_attention_heads = num_attention_heads
    self.hidden_act = hidden_act
    self.intermediate_size = intermediate_size
    self.hidden_dropout_prob = hidden_dropout_prob
    self.attention_probs_dropout_prob = attention_probs_dropout_prob
    self.max_position_embeddings = max_position_embeddings
    self.type_vocab_size = type_vocab_size
    self.initializer_range = initializer_range
    self.backward_compatible = backward_compatible

  @classmethod
  def from_dict(cls, json_object):
    """Constructs a `BertConfig` from a Python dictionary of parameters."""
    config = BertConfig(vocab_size=None)
    for (key, value) in six.iteritems(json_object):
      config.__dict__[key] = value
    return config

  @classmethod
  def from_json_file(cls, json_file):
    """Constructs a `BertConfig` from a json file of parameters."""
    with tf.io.gfile.GFile(json_file, "r") as reader:
      text = reader.read()
    return cls.from_dict(json.loads(text))

  def to_dict(self):
    """Serializes this instance to a Python dictionary."""
    output = copy.deepcopy(self.__dict__)
    return output

  def to_json_string(self):
    """Serializes this instance to a JSON string."""
    return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"


Chen Chen's avatar
Chen Chen committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
class AlbertConfig(BertConfig):
  """Configuration for `ALBERT`."""

  def __init__(self,
               embedding_size,
               num_hidden_groups=1,
               inner_group_num=1,
               **kwargs):
    """Constructs AlbertConfig.

    Args:
      embedding_size: Size of the factorized word embeddings.
      num_hidden_groups: Number of group for the hidden layers, parameters in
        the same group are shared. Note that this value and also the following
        'inner_group_num' has to be 1 for now, because all released ALBERT
        models set them to 1. We may support arbitary valid values in future.
      inner_group_num: Number of inner repetition of attention and ffn.
      **kwargs: The remaining arguments are the same as above 'BertConfig'.
    """
    super(AlbertConfig, self).__init__(**kwargs)
    self.embedding_size = embedding_size

    # TODO(chendouble): 'inner_group_num' and 'num_hidden_groups' are always 1
    # in the released ALBERT. Support other values in AlbertTransformerEncoder
    # if needed.
    if inner_group_num != 1 or num_hidden_groups != 1:
      raise ValueError("We only support 'inner_group_num' and "
                       "'num_hidden_groups' as 1.")

  @classmethod
  def from_dict(cls, json_object):
    """Constructs a `AlbertConfig` from a Python dictionary of parameters."""
    config = AlbertConfig(embedding_size=None, vocab_size=None)
    for (key, value) in six.iteritems(json_object):
      config.__dict__[key] = value
    return config


149
@deprecation.deprecated(None, "The function should not be used any more.")
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
def get_bert_model(input_word_ids,
                   input_mask,
                   input_type_ids,
                   config=None,
                   name=None,
                   float_type=tf.float32):
  """Wraps the core BERT model as a keras.Model."""
  bert_model_layer = BertModel(config=config, float_type=float_type, name=name)
  pooled_output, sequence_output = bert_model_layer(input_word_ids, input_mask,
                                                    input_type_ids)
  bert_model = tf.keras.Model(
      inputs=[input_word_ids, input_mask, input_type_ids],
      outputs=[pooled_output, sequence_output])
  return bert_model


class BertModel(tf.keras.layers.Layer):
  """BERT model ("Bidirectional Encoder Representations from Transformers").

  Example usage:

  ```python
  # Already been converted into WordPiece token ids
  input_word_ids = tf.constant([[31, 51, 99], [15, 5, 0]])
  input_mask = tf.constant([[1, 1, 1], [1, 1, 0]])
  input_type_ids = tf.constant([[0, 0, 1], [0, 2, 0]])

  config = modeling.BertConfig(vocab_size=32000, hidden_size=512,
    num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)

  pooled_output, sequence_output = modeling.BertModel(config=config)(
    input_word_ids=input_word_ids,
    input_mask=input_mask,
    input_type_ids=input_type_ids)
  ...
  ```
  """

188
189
  @deprecation.deprecated(
      None, "Please use `nlp.modeling.networks.TransformerEncoder` instead.")
190
191
192
193
194
195
196
197
  def __init__(self, config, float_type=tf.float32, **kwargs):
    super(BertModel, self).__init__(**kwargs)
    self.config = (
        BertConfig.from_dict(config)
        if isinstance(config, dict) else copy.deepcopy(config))
    self.float_type = float_type

  def build(self, unused_input_shapes):
198
    """Implements build() for the layer."""
199
200
201
202
    self.embedding_lookup = EmbeddingLookup(
        vocab_size=self.config.vocab_size,
        embedding_size=self.config.hidden_size,
        initializer_range=self.config.initializer_range,
203
        dtype=tf.float32,
204
205
206
207
208
209
210
211
        name="word_embeddings")
    self.embedding_postprocessor = EmbeddingPostprocessor(
        use_type_embeddings=True,
        token_type_vocab_size=self.config.type_vocab_size,
        use_position_embeddings=True,
        max_position_embeddings=self.config.max_position_embeddings,
        dropout_prob=self.config.hidden_dropout_prob,
        initializer_range=self.config.initializer_range,
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
212
        dtype=tf.float32,
213
214
215
216
217
218
219
220
221
222
223
        name="embedding_postprocessor")
    self.encoder = Transformer(
        num_hidden_layers=self.config.num_hidden_layers,
        hidden_size=self.config.hidden_size,
        num_attention_heads=self.config.num_attention_heads,
        intermediate_size=self.config.intermediate_size,
        intermediate_activation=self.config.hidden_act,
        hidden_dropout_prob=self.config.hidden_dropout_prob,
        attention_probs_dropout_prob=self.config.attention_probs_dropout_prob,
        initializer_range=self.config.initializer_range,
        backward_compatible=self.config.backward_compatible,
224
        float_type=self.float_type,
225
226
227
228
229
230
231
232
233
234
235
236
237
        name="encoder")
    self.pooler_transform = tf.keras.layers.Dense(
        units=self.config.hidden_size,
        activation="tanh",
        kernel_initializer=get_initializer(self.config.initializer_range),
        name="pooler_transform")
    super(BertModel, self).build(unused_input_shapes)

  def __call__(self,
               input_word_ids,
               input_mask=None,
               input_type_ids=None,
               **kwargs):
238
    inputs = tf_utils.pack_inputs([input_word_ids, input_mask, input_type_ids])
239
240
    return super(BertModel, self).__call__(inputs, **kwargs)

241
242
243
244
245
246
  def call(self, inputs, mode="bert"):
    """Implements call() for the layer.

    Args:
      inputs: packed input tensors.
      mode: string, `bert` or `encoder`.
247

248
249
250
251
252
    Returns:
      Output tensor of the last layer for BERT training (mode=`bert`) which
      is a float Tensor of shape [batch_size, seq_length, hidden_size] or
      a list of output tensors for encoder usage (mode=`encoder`).
    """
253
    unpacked_inputs = tf_utils.unpack_inputs(inputs)
254
255
256
257
258
259
260
    input_word_ids = unpacked_inputs[0]
    input_mask = unpacked_inputs[1]
    input_type_ids = unpacked_inputs[2]

    word_embeddings = self.embedding_lookup(input_word_ids)
    embedding_tensor = self.embedding_postprocessor(
        word_embeddings=word_embeddings, token_type_ids=input_type_ids)
261
262
    if self.float_type == tf.float16:
      embedding_tensor = tf.cast(embedding_tensor, tf.float16)
263
264
265
266
267
    attention_mask = None
    if input_mask is not None:
      attention_mask = create_attention_mask_from_input_mask(
          input_word_ids, input_mask)

268
269
270
    if mode == "encoder":
      return self.encoder(
          embedding_tensor, attention_mask, return_all_layers=True)
271

272
273
    sequence_output = self.encoder(embedding_tensor, attention_mask)
    first_token_tensor = tf.squeeze(sequence_output[:, 0:1, :], axis=1)
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    pooled_output = self.pooler_transform(first_token_tensor)

    return (pooled_output, sequence_output)

  def get_config(self):
    config = {"config": self.config.to_dict()}
    base_config = super(BertModel, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))


class EmbeddingLookup(tf.keras.layers.Layer):
  """Looks up words embeddings for id tensor."""

  def __init__(self,
               vocab_size,
               embedding_size=768,
               initializer_range=0.02,
               **kwargs):
    super(EmbeddingLookup, self).__init__(**kwargs)
    self.vocab_size = vocab_size
    self.embedding_size = embedding_size
    self.initializer_range = initializer_range

  def build(self, unused_input_shapes):
298
    """Implements build() for the layer."""
299
300
301
302
303
304
305
306
    self.embeddings = self.add_weight(
        "embeddings",
        shape=[self.vocab_size, self.embedding_size],
        initializer=get_initializer(self.initializer_range),
        dtype=self.dtype)
    super(EmbeddingLookup, self).build(unused_input_shapes)

  def call(self, inputs):
307
    """Implements call() for the layer."""
308
    input_shape = tf_utils.get_shape_list(inputs)
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    flat_input = tf.reshape(inputs, [-1])
    output = tf.gather(self.embeddings, flat_input)
    output = tf.reshape(output, input_shape + [self.embedding_size])
    return output


class EmbeddingPostprocessor(tf.keras.layers.Layer):
  """Performs various post-processing on a word embedding tensor."""

  def __init__(self,
               use_type_embeddings=False,
               token_type_vocab_size=None,
               use_position_embeddings=True,
               max_position_embeddings=512,
               dropout_prob=0.0,
               initializer_range=0.02,
325
               initializer=None,
326
327
328
329
330
331
332
333
334
               **kwargs):
    super(EmbeddingPostprocessor, self).__init__(**kwargs)
    self.use_type_embeddings = use_type_embeddings
    self.token_type_vocab_size = token_type_vocab_size
    self.use_position_embeddings = use_position_embeddings
    self.max_position_embeddings = max_position_embeddings
    self.dropout_prob = dropout_prob
    self.initializer_range = initializer_range

335
336
337
338
339
    if not initializer:
      self.initializer = get_initializer(self.initializer_range)
    else:
      self.initializer = initializer

340
341
342
343
344
    if self.use_type_embeddings and not self.token_type_vocab_size:
      raise ValueError("If `use_type_embeddings` is True, then "
                       "`token_type_vocab_size` must be specified.")

  def build(self, input_shapes):
345
    """Implements build() for the layer."""
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    (word_embeddings_shape, _) = input_shapes
    width = word_embeddings_shape.as_list()[-1]
    self.type_embeddings = None
    if self.use_type_embeddings:
      self.type_embeddings = self.add_weight(
          "type_embeddings",
          shape=[self.token_type_vocab_size, width],
          initializer=get_initializer(self.initializer_range),
          dtype=self.dtype)

    self.position_embeddings = None
    if self.use_position_embeddings:
      self.position_embeddings = self.add_weight(
          "position_embeddings",
          shape=[self.max_position_embeddings, width],
          initializer=get_initializer(self.initializer_range),
          dtype=self.dtype)

    self.output_layer_norm = tf.keras.layers.LayerNormalization(
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
365
        name="layer_norm", axis=-1, epsilon=1e-12, dtype=tf.float32)
366
367
    self.output_dropout = tf.keras.layers.Dropout(
        rate=self.dropout_prob, dtype=tf.float32)
368
369
370
    super(EmbeddingPostprocessor, self).build(input_shapes)

  def __call__(self, word_embeddings, token_type_ids=None, **kwargs):
371
    inputs = tf_utils.pack_inputs([word_embeddings, token_type_ids])
372
373
374
    return super(EmbeddingPostprocessor, self).__call__(inputs, **kwargs)

  def call(self, inputs):
375
    """Implements call() for the layer."""
376
    unpacked_inputs = tf_utils.unpack_inputs(inputs)
377
378
    word_embeddings = unpacked_inputs[0]
    token_type_ids = unpacked_inputs[1]
379
    input_shape = tf_utils.get_shape_list(word_embeddings, expected_rank=3)
380
381
382
383
384
385
386
    batch_size = input_shape[0]
    seq_length = input_shape[1]
    width = input_shape[2]

    output = word_embeddings
    if self.use_type_embeddings:
      flat_token_type_ids = tf.reshape(token_type_ids, [-1])
387
388
      token_type_embeddings = tf.gather(self.type_embeddings,
                                        flat_token_type_ids)
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
      token_type_embeddings = tf.reshape(token_type_embeddings,
                                         [batch_size, seq_length, width])
      output += token_type_embeddings

    if self.use_position_embeddings:
      position_embeddings = tf.expand_dims(
          tf.slice(self.position_embeddings, [0, 0], [seq_length, width]),
          axis=0)

      output += position_embeddings

    output = self.output_layer_norm(output)
    output = self.output_dropout(output)

    return output


class Attention(tf.keras.layers.Layer):
  """Performs multi-headed attention from `from_tensor` to `to_tensor`.

  This is an implementation of multi-headed attention based on "Attention
  is all you Need". If `from_tensor` and `to_tensor` are the same, then
  this is self-attention. Each timestep in `from_tensor` attends to the
  corresponding sequence in `to_tensor`, and returns a fixed-with vector.

  This function first projects `from_tensor` into a "query" tensor and
  `to_tensor` into "key" and "value" tensors. These are (effectively) a list
  of tensors of length `num_attention_heads`, where each tensor is of shape
  [batch_size, seq_length, size_per_head].

  Then, the query and key tensors are dot-producted and scaled. These are
  softmaxed to obtain attention probabilities. The value tensors are then
  interpolated by these probabilities, then concatenated back to a single
  tensor and returned.

  In practice, the multi-headed attention are done with tf.einsum as follows:
    Input_tensor: [BFD]
    Wq, Wk, Wv: [DNH]
    Q:[BFNH] = einsum('BFD,DNH->BFNH', Input_tensor, Wq)
    K:[BTNH] = einsum('BTD,DNH->BTNH', Input_tensor, Wk)
    V:[BTNH] = einsum('BTD,DNH->BTNH', Input_tensor, Wv)
430
    attention_scores:[BNFT] = einsum('BTNH,BFNH->BNFT', K, Q) / sqrt(H)
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
    attention_probs:[BNFT] = softmax(attention_scores)
    context_layer:[BFNH] = einsum('BNFT,BTNH->BFNH', attention_probs, V)
    Wout:[DNH]
    Output:[BFD] = einsum('BFNH,DNH>BFD', context_layer, Wout)
  """

  def __init__(self,
               num_attention_heads=12,
               size_per_head=64,
               attention_probs_dropout_prob=0.0,
               initializer_range=0.02,
               backward_compatible=False,
               **kwargs):
    super(Attention, self).__init__(**kwargs)
    self.num_attention_heads = num_attention_heads
    self.size_per_head = size_per_head
    self.attention_probs_dropout_prob = attention_probs_dropout_prob
    self.initializer_range = initializer_range
    self.backward_compatible = backward_compatible

  def build(self, unused_input_shapes):
452
    """Implements build() for the layer."""
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
    self.query_dense = self._projection_dense_layer("query")
    self.key_dense = self._projection_dense_layer("key")
    self.value_dense = self._projection_dense_layer("value")
    self.attention_probs_dropout = tf.keras.layers.Dropout(
        rate=self.attention_probs_dropout_prob)
    super(Attention, self).build(unused_input_shapes)

  def reshape_to_matrix(self, input_tensor):
    """Reshape N > 2 rank tensor to rank 2 tensor for performance."""
    ndims = input_tensor.shape.ndims
    if ndims < 2:
      raise ValueError("Input tensor must have at least rank 2."
                       "Shape = %s" % (input_tensor.shape))
    if ndims == 2:
      return input_tensor

    width = input_tensor.shape[-1]
    output_tensor = tf.reshape(input_tensor, [-1, width])
    return output_tensor

  def __call__(self, from_tensor, to_tensor, attention_mask=None, **kwargs):
474
    inputs = tf_utils.pack_inputs([from_tensor, to_tensor, attention_mask])
475
476
477
    return super(Attention, self).__call__(inputs, **kwargs)

  def call(self, inputs):
478
    """Implements call() for the layer."""
479
    (from_tensor, to_tensor, attention_mask) = tf_utils.unpack_inputs(inputs)
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

    # Scalar dimensions referenced here:
    #   B = batch size (number of sequences)
    #   F = `from_tensor` sequence length
    #   T = `to_tensor` sequence length
    #   N = `num_attention_heads`
    #   H = `size_per_head`
    # `query_tensor` = [B, F, N ,H]
    query_tensor = self.query_dense(from_tensor)

    # `key_tensor` = [B, T, N, H]
    key_tensor = self.key_dense(to_tensor)

    # `value_tensor` = [B, T, N, H]
    value_tensor = self.value_dense(to_tensor)

    # Take the dot product between "query" and "key" to get the raw
    # attention scores.
498
    attention_scores = tf.einsum("BTNH,BFNH->BNFT", key_tensor, query_tensor)
499
500
501
502
503
504
505
506
507
508
    attention_scores = tf.multiply(attention_scores,
                                   1.0 / math.sqrt(float(self.size_per_head)))

    if attention_mask is not None:
      # `attention_mask` = [B, 1, F, T]
      attention_mask = tf.expand_dims(attention_mask, axis=[1])

      # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
      # masked positions, this operation will create a tensor which is 0.0 for
      # positions we want to attend and -10000.0 for masked positions.
509
      adder = (1.0 - tf.cast(attention_mask, attention_scores.dtype)) * -10000.0
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

      # Since we are adding it to the raw scores before the softmax, this is
      # effectively the same as removing these entirely.
      attention_scores += adder

    # Normalize the attention scores to probabilities.
    # `attention_probs` = [B, N, F, T]
    attention_probs = tf.nn.softmax(attention_scores)

    # This is actually dropping out entire tokens to attend to, which might
    # seem a bit unusual, but is taken from the original Transformer paper.
    attention_probs = self.attention_probs_dropout(attention_probs)

    # `context_layer` = [B, F, N, H]
    context_tensor = tf.einsum("BNFT,BTNH->BFNH", attention_probs, value_tensor)

    return context_tensor

  def _projection_dense_layer(self, name):
529
    """A helper to define a projection layer."""
530
531
532
533
534
535
536
537
538
539
    return Dense3D(
        num_attention_heads=self.num_attention_heads,
        size_per_head=self.size_per_head,
        kernel_initializer=get_initializer(self.initializer_range),
        output_projection=False,
        backward_compatible=self.backward_compatible,
        name=name)


class Dense3D(tf.keras.layers.Layer):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
540
541
542
543
544
545
546
547
548
549
550
551
552
553
  """A Dense Layer using 3D kernel with tf.einsum implementation.

  Attributes:
    num_attention_heads: An integer, number of attention heads for each
      multihead attention layer.
    size_per_head: An integer, hidden size per attention head.
    hidden_size: An integer, dimension of the hidden layer.
    kernel_initializer: An initializer for the kernel weight.
    bias_initializer: An initializer for the bias.
    activation: An activation function to use. If nothing is specified, no
      activation is applied.
    use_bias: A bool, whether the layer uses a bias.
    output_projection: A bool, whether the Dense3D layer is used for output
      linear projection.
554
555
    backward_compatible: A bool, whether the variables shape are compatible with
      checkpoints converted from TF 1.x.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
556
  """
557
558
559
560
561
562
563

  def __init__(self,
               num_attention_heads=12,
               size_per_head=72,
               kernel_initializer=None,
               bias_initializer="zeros",
               activation=None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
564
               use_bias=True,
565
566
567
               output_projection=False,
               backward_compatible=False,
               **kwargs):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
568
    """Inits Dense3D."""
569
570
571
572
573
574
575
    super(Dense3D, self).__init__(**kwargs)
    self.num_attention_heads = num_attention_heads
    self.size_per_head = size_per_head
    self.hidden_size = num_attention_heads * size_per_head
    self.kernel_initializer = kernel_initializer
    self.bias_initializer = bias_initializer
    self.activation = activation
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
576
    self.use_bias = use_bias
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
    self.output_projection = output_projection
    self.backward_compatible = backward_compatible

  @property
  def compatible_kernel_shape(self):
    if self.output_projection:
      return [self.hidden_size, self.hidden_size]
    return [self.last_dim, self.hidden_size]

  @property
  def compatible_bias_shape(self):
    return [self.hidden_size]

  @property
  def kernel_shape(self):
    if self.output_projection:
      return [self.num_attention_heads, self.size_per_head, self.hidden_size]
    return [self.last_dim, self.num_attention_heads, self.size_per_head]

  @property
  def bias_shape(self):
    if self.output_projection:
      return [self.hidden_size]
    return [self.num_attention_heads, self.size_per_head]

  def build(self, input_shape):
603
    """Implements build() for the layer."""
604
605
    dtype = tf.as_dtype(self.dtype or tf.keras.backend.floatx())
    if not (dtype.is_floating or dtype.is_complex):
606
607
      raise TypeError("Unable to build `Dense3D` layer with non-floating "
                      "point (and non-complex) dtype %s" % (dtype,))
608
609
    input_shape = tf.TensorShape(input_shape)
    if tf.compat.dimension_value(input_shape[-1]) is None:
610
      raise ValueError("The last dimension of the inputs to `Dense3D` "
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
                       "should be defined. Found `None`.")
    self.last_dim = tf.compat.dimension_value(input_shape[-1])
    self.input_spec = tf.keras.layers.InputSpec(
        min_ndim=3, axes={-1: self.last_dim})
    # Determines variable shapes.
    if self.backward_compatible:
      kernel_shape = self.compatible_kernel_shape
      bias_shape = self.compatible_bias_shape
    else:
      kernel_shape = self.kernel_shape
      bias_shape = self.bias_shape

    self.kernel = self.add_weight(
        "kernel",
        shape=kernel_shape,
        initializer=self.kernel_initializer,
        dtype=self.dtype,
        trainable=True)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
629
630
631
632
633
634
635
636
637
    if self.use_bias:
      self.bias = self.add_weight(
          "bias",
          shape=bias_shape,
          initializer=self.bias_initializer,
          dtype=self.dtype,
          trainable=True)
    else:
      self.bias = None
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
    super(Dense3D, self).build(input_shape)

  def call(self, inputs):
    """Implements ``call()`` for Dense3D.

    Args:
      inputs: A float tensor of shape [batch_size, sequence_length, hidden_size]
        when output_projection is False, otherwise a float tensor of shape
        [batch_size, sequence_length, num_heads, dim_per_head].

    Returns:
      The projected tensor with shape [batch_size, sequence_length, num_heads,
        dim_per_head] when output_projection is False, otherwise [batch_size,
        sequence_length, hidden_size].
    """
    if self.backward_compatible:
      kernel = tf.keras.backend.reshape(self.kernel, self.kernel_shape)
655
656
657
      bias = (
          tf.keras.backend.reshape(self.bias, self.bias_shape)
          if self.use_bias else None)
658
659
660
661
662
663
664
665
    else:
      kernel = self.kernel
      bias = self.bias

    if self.output_projection:
      ret = tf.einsum("abcd,cde->abe", inputs, kernel)
    else:
      ret = tf.einsum("abc,cde->abde", inputs, kernel)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
666
667
    if self.use_bias:
      ret += bias
668
669
670
671
672
673
674
675
676
677
678
679
680
    if self.activation is not None:
      return self.activation(ret)
    return ret


class Dense2DProjection(tf.keras.layers.Layer):
  """A 2D projection layer with tf.einsum implementation."""

  def __init__(self,
               output_size,
               kernel_initializer=None,
               bias_initializer="zeros",
               activation=None,
681
               fp32_activation=False,
682
683
684
685
686
687
               **kwargs):
    super(Dense2DProjection, self).__init__(**kwargs)
    self.output_size = output_size
    self.kernel_initializer = kernel_initializer
    self.bias_initializer = bias_initializer
    self.activation = activation
688
    self.fp32_activation = fp32_activation
689
690

  def build(self, input_shape):
691
    """Implements build() for the layer."""
692
693
    dtype = tf.as_dtype(self.dtype or tf.keras.backend.floatx())
    if not (dtype.is_floating or dtype.is_complex):
694
695
      raise TypeError("Unable to build `Dense2DProjection` layer with "
                      "non-floating point (and non-complex) "
696
697
698
                      "dtype %s" % (dtype,))
    input_shape = tf.TensorShape(input_shape)
    if tf.compat.dimension_value(input_shape[-1]) is None:
699
700
701
      raise ValueError("The last dimension of the inputs to "
                       "`Dense2DProjection` should be defined. "
                       "Found `None`.")
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
    last_dim = tf.compat.dimension_value(input_shape[-1])
    self.input_spec = tf.keras.layers.InputSpec(min_ndim=3, axes={-1: last_dim})
    self.kernel = self.add_weight(
        "kernel",
        shape=[last_dim, self.output_size],
        initializer=self.kernel_initializer,
        dtype=self.dtype,
        trainable=True)
    self.bias = self.add_weight(
        "bias",
        shape=[self.output_size],
        initializer=self.bias_initializer,
        dtype=self.dtype,
        trainable=True)
    super(Dense2DProjection, self).build(input_shape)

  def call(self, inputs):
    """Implements call() for Dense2DProjection.

    Args:
      inputs: float Tensor of shape [batch, from_seq_length,
        num_attention_heads, size_per_head].

    Returns:
      A 3D Tensor.
    """
    ret = tf.einsum("abc,cd->abd", inputs, self.kernel)
    ret += self.bias
    if self.activation is not None:
731
732
      if self.dtype == tf.float16 and self.fp32_activation:
        ret = tf.cast(ret, tf.float32)
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
      return self.activation(ret)
    return ret


class TransformerBlock(tf.keras.layers.Layer):
  """Single transformer layer.

  It has two sub-layers. The first is a multi-head self-attention mechanism, and
  the second is a positionwise fully connected feed-forward network.
  """

  def __init__(self,
               hidden_size=768,
               num_attention_heads=12,
               intermediate_size=3072,
               intermediate_activation="gelu",
               hidden_dropout_prob=0.0,
               attention_probs_dropout_prob=0.0,
               initializer_range=0.02,
               backward_compatible=False,
753
               float_type=tf.float32,
754
755
756
757
758
               **kwargs):
    super(TransformerBlock, self).__init__(**kwargs)
    self.hidden_size = hidden_size
    self.num_attention_heads = num_attention_heads
    self.intermediate_size = intermediate_size
759
760
    self.intermediate_activation = tf_utils.get_activation(
        intermediate_activation)
761
762
763
764
    self.hidden_dropout_prob = hidden_dropout_prob
    self.attention_probs_dropout_prob = attention_probs_dropout_prob
    self.initializer_range = initializer_range
    self.backward_compatible = backward_compatible
765
    self.float_type = float_type
766
767
768
769
770
771
772
773

    if self.hidden_size % self.num_attention_heads != 0:
      raise ValueError(
          "The hidden size (%d) is not a multiple of the number of attention "
          "heads (%d)" % (self.hidden_size, self.num_attention_heads))
    self.attention_head_size = int(self.hidden_size / self.num_attention_heads)

  def build(self, unused_input_shapes):
774
    """Implements build() for the layer."""
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
    self.attention_layer = Attention(
        num_attention_heads=self.num_attention_heads,
        size_per_head=self.attention_head_size,
        attention_probs_dropout_prob=self.attention_probs_dropout_prob,
        initializer_range=self.initializer_range,
        backward_compatible=self.backward_compatible,
        name="self_attention")
    self.attention_output_dense = Dense3D(
        num_attention_heads=self.num_attention_heads,
        size_per_head=int(self.hidden_size / self.num_attention_heads),
        kernel_initializer=get_initializer(self.initializer_range),
        output_projection=True,
        backward_compatible=self.backward_compatible,
        name="self_attention_output")
    self.attention_dropout = tf.keras.layers.Dropout(
        rate=self.hidden_dropout_prob)
    self.attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
793
794
795
            name="self_attention_layer_norm",
            axis=-1,
            epsilon=1e-12,
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
796
797
            # We do layer norm in float32 for numeric stability.
            dtype=tf.float32))
798
799
800
801
    self.intermediate_dense = Dense2DProjection(
        output_size=self.intermediate_size,
        kernel_initializer=get_initializer(self.initializer_range),
        activation=self.intermediate_activation,
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
802
        # Uses float32 so that gelu activation is done in float32.
803
        fp32_activation=True,
804
805
806
807
808
809
810
        name="intermediate")
    self.output_dense = Dense2DProjection(
        output_size=self.hidden_size,
        kernel_initializer=get_initializer(self.initializer_range),
        name="output")
    self.output_dropout = tf.keras.layers.Dropout(rate=self.hidden_dropout_prob)
    self.output_layer_norm = tf.keras.layers.LayerNormalization(
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
811
        name="output_layer_norm", axis=-1, epsilon=1e-12, dtype=tf.float32)
812
813
    super(TransformerBlock, self).build(unused_input_shapes)

814
815
816
817
818
819
820
821
822
  def common_layers(self):
    """Explicitly gets all layer objects inside a Transformer encoder block."""
    return [
        self.attention_layer, self.attention_output_dense,
        self.attention_dropout, self.attention_layer_norm,
        self.intermediate_dense, self.output_dense, self.output_dropout,
        self.output_layer_norm
    ]

823
  def __call__(self, input_tensor, attention_mask=None, **kwargs):
824
    inputs = tf_utils.pack_inputs([input_tensor, attention_mask])
825
    return super(TransformerBlock, self).__call__(inputs, **kwargs)
826
827

  def call(self, inputs):
828
    """Implements call() for the layer."""
829
    (input_tensor, attention_mask) = tf_utils.unpack_inputs(inputs)
830
831
832
833
834
835
    attention_output = self.attention_layer(
        from_tensor=input_tensor,
        to_tensor=input_tensor,
        attention_mask=attention_mask)
    attention_output = self.attention_output_dense(attention_output)
    attention_output = self.attention_dropout(attention_output)
836
837
    # Use float32 in keras layer norm and the gelu activation in the
    # intermediate dense layer for numeric stability
838
839
    attention_output = self.attention_layer_norm(input_tensor +
                                                 attention_output)
840
841
    if self.float_type == tf.float16:
      attention_output = tf.cast(attention_output, tf.float16)
842
    intermediate_output = self.intermediate_dense(attention_output)
843
844
    if self.float_type == tf.float16:
      intermediate_output = tf.cast(intermediate_output, tf.float16)
845
846
    layer_output = self.output_dense(intermediate_output)
    layer_output = self.output_dropout(layer_output)
847
    # Use float32 in keras layer norm for numeric stability
848
    layer_output = self.output_layer_norm(layer_output + attention_output)
849
850
    if self.float_type == tf.float16:
      layer_output = tf.cast(layer_output, tf.float16)
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
    return layer_output


class Transformer(tf.keras.layers.Layer):
  """Multi-headed, multi-layer Transformer from "Attention is All You Need".

  This is almost an exact implementation of the original Transformer encoder.

  See the original paper:
  https://arxiv.org/abs/1706.03762

  Also see:
  https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py
  """

  def __init__(self,
               num_hidden_layers=12,
               hidden_size=768,
               num_attention_heads=12,
               intermediate_size=3072,
               intermediate_activation="gelu",
               hidden_dropout_prob=0.0,
               attention_probs_dropout_prob=0.0,
               initializer_range=0.02,
               backward_compatible=False,
876
               float_type=tf.float32,
877
878
879
880
881
882
               **kwargs):
    super(Transformer, self).__init__(**kwargs)
    self.num_hidden_layers = num_hidden_layers
    self.hidden_size = hidden_size
    self.num_attention_heads = num_attention_heads
    self.intermediate_size = intermediate_size
883
884
    self.intermediate_activation = tf_utils.get_activation(
        intermediate_activation)
885
886
887
888
    self.hidden_dropout_prob = hidden_dropout_prob
    self.attention_probs_dropout_prob = attention_probs_dropout_prob
    self.initializer_range = initializer_range
    self.backward_compatible = backward_compatible
889
    self.float_type = float_type
890
891

  def build(self, unused_input_shapes):
892
    """Implements build() for the layer."""
893
894
895
896
897
898
899
900
901
902
903
904
    self.layers = []
    for i in range(self.num_hidden_layers):
      self.layers.append(
          TransformerBlock(
              hidden_size=self.hidden_size,
              num_attention_heads=self.num_attention_heads,
              intermediate_size=self.intermediate_size,
              intermediate_activation=self.intermediate_activation,
              hidden_dropout_prob=self.hidden_dropout_prob,
              attention_probs_dropout_prob=self.attention_probs_dropout_prob,
              initializer_range=self.initializer_range,
              backward_compatible=self.backward_compatible,
905
              float_type=self.float_type,
906
907
908
              name=("layer_%d" % i)))
    super(Transformer, self).build(unused_input_shapes)

909
  def __call__(self, input_tensor, attention_mask=None, **kwargs):
910
    inputs = tf_utils.pack_inputs([input_tensor, attention_mask])
911
    return super(Transformer, self).__call__(inputs=inputs, **kwargs)
912

913
914
915
916
917
918
919
  def call(self, inputs, return_all_layers=False):
    """Implements call() for the layer.

    Args:
      inputs: packed inputs.
      return_all_layers: bool, whether to return outputs of all layers inside
        encoders.
920

921
922
923
    Returns:
      Output tensor of the last layer or a list of output tensors.
    """
924
    unpacked_inputs = tf_utils.unpack_inputs(inputs)
925
926
927
928
    input_tensor = unpacked_inputs[0]
    attention_mask = unpacked_inputs[1]
    output_tensor = input_tensor

929
    all_layer_outputs = []
930
931
    for layer in self.layers:
      output_tensor = layer(output_tensor, attention_mask)
932
933
934
935
936
937
      all_layer_outputs.append(output_tensor)

    if return_all_layers:
      return all_layer_outputs

    return all_layer_outputs[-1]
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961


def get_initializer(initializer_range=0.02):
  """Creates a `tf.initializers.truncated_normal` with the given range.

  Args:
    initializer_range: float, initializer range for stddev.

  Returns:
    TruncatedNormal initializer with stddev = `initializer_range`.
  """
  return tf.keras.initializers.TruncatedNormal(stddev=initializer_range)


def create_attention_mask_from_input_mask(from_tensor, to_mask):
  """Create 3D attention mask from a 2D tensor mask.

  Args:
    from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
    to_mask: int32 Tensor of shape [batch_size, to_seq_length].

  Returns:
    float Tensor of shape [batch_size, from_seq_length, to_seq_length].
  """
962
  from_shape = tf_utils.get_shape_list(from_tensor, expected_rank=[2, 3])
963
964
965
  batch_size = from_shape[0]
  from_seq_length = from_shape[1]

966
  to_shape = tf_utils.get_shape_list(to_mask, expected_rank=2)
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
  to_seq_length = to_shape[1]

  to_mask = tf.cast(
      tf.reshape(to_mask, [batch_size, 1, to_seq_length]),
      dtype=from_tensor.dtype)

  # We don't assume that `from_tensor` is a mask (although it could be). We
  # don't actually care if we attend *from* padding tokens (only *to* padding)
  # tokens so we create a tensor of all ones.
  #
  # `broadcast_ones` = [batch_size, from_seq_length, 1]
  broadcast_ones = tf.ones(
      shape=[batch_size, from_seq_length, 1], dtype=from_tensor.dtype)

  # Here we broadcast along two dimensions to create the mask.
  mask = broadcast_ones * to_mask

  return mask