losses.proto 3.98 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
syntax = "proto2";

package object_detection.protos;

// Message for configuring the localization loss, classification loss and hard
// example miner used for training object detection models. See core/losses.py
// for details
message Loss {
  // Localization loss to use.
  optional LocalizationLoss localization_loss = 1;

  // Classification loss to use.
  optional ClassificationLoss classification_loss = 2;

  // If not left to default, applies hard example mining.
  optional HardExampleMiner hard_example_miner = 3;

  // Classification loss weight.
  optional float classification_weight = 4 [default=1.0];

  // Localization loss weight.
  optional float localization_weight = 5 [default=1.0];
}

// Configuration for bounding box localization loss function.
message LocalizationLoss {
  oneof localization_loss {
    WeightedL2LocalizationLoss weighted_l2 = 1;
    WeightedSmoothL1LocalizationLoss weighted_smooth_l1 = 2;
    WeightedIOULocalizationLoss weighted_iou = 3;
  }
}

// L2 location loss: 0.5 * ||weight * (a - b)|| ^ 2
message WeightedL2LocalizationLoss {
  // Output loss per anchor.
  optional bool anchorwise_output = 1 [default=false];
}

// SmoothL1 (Huber) location loss: .5 * x ^ 2 if |x| < 1 else |x| - .5
message WeightedSmoothL1LocalizationLoss {
  // Output loss per anchor.
  optional bool anchorwise_output = 1 [default=false];
}

// Intersection over union location loss: 1 - IOU
message WeightedIOULocalizationLoss {
}

// Configuration for class prediction loss function.
message ClassificationLoss {
  oneof classification_loss {
    WeightedSigmoidClassificationLoss weighted_sigmoid = 1;
    WeightedSoftmaxClassificationLoss weighted_softmax = 2;
    BootstrappedSigmoidClassificationLoss bootstrapped_sigmoid = 3;
  }
}

// Classification loss using a sigmoid function over class predictions.
message WeightedSigmoidClassificationLoss {
  // Output loss per anchor.
  optional bool anchorwise_output = 1 [default=false];
}

// Classification loss using a softmax function over class predictions.
message WeightedSoftmaxClassificationLoss {
  // Output loss per anchor.
  optional bool anchorwise_output = 1 [default=false];
}

// Classification loss using a sigmoid function over the class prediction with
// the highest prediction score.
message BootstrappedSigmoidClassificationLoss {
  // Interpolation weight between 0 and 1.
  optional float alpha = 1;

  // Whether hard boot strapping should be used or not. If true, will only use
  // one class favored by model. Othewise, will use all predicted class
  // probabilities.
  optional bool hard_bootstrap = 2 [default=false];

  // Output loss per anchor.
  optional bool anchorwise_output = 3 [default=false];
}

// Configuation for hard example miner.
message HardExampleMiner {
  // Maximum number of hard examples to be selected per image (prior to
  // enforcing max negative to positive ratio constraint).  If set to 0,
  // all examples obtained after NMS are considered.
  optional int32 num_hard_examples = 1 [default=64];

  // Minimum intersection over union for an example to be discarded during NMS.
  optional float iou_threshold = 2 [default=0.7];

  // Whether to use classification losses ('cls', default), localization losses
  // ('loc') or both losses ('both'). In the case of 'both', cls_loss_weight and
  // loc_loss_weight are used to compute weighted sum of the two losses.
  enum LossType {
    BOTH = 0;
    CLASSIFICATION = 1;
    LOCALIZATION = 2;
  }
  optional LossType loss_type = 3 [default=BOTH];

  // Maximum number of negatives to retain for each positive anchor. If
  // num_negatives_per_positive is 0 no prespecified negative:positive ratio is
  // enforced.
  optional int32 max_negatives_per_positive = 4 [default=0];

  // Minimum number of negative anchors to sample for a given image. Setting
  // this to a positive number samples negatives in an image without any
  // positive anchors and thus not bias the model towards having at least one
  // detection per image.
  optional int32 min_negatives_per_image = 5 [default=0];
}