syntax = "proto2"; package object_detection.protos; // Message for configuring the localization loss, classification loss and hard // example miner used for training object detection models. See core/losses.py // for details message Loss { // Localization loss to use. optional LocalizationLoss localization_loss = 1; // Classification loss to use. optional ClassificationLoss classification_loss = 2; // If not left to default, applies hard example mining. optional HardExampleMiner hard_example_miner = 3; // Classification loss weight. optional float classification_weight = 4 [default=1.0]; // Localization loss weight. optional float localization_weight = 5 [default=1.0]; } // Configuration for bounding box localization loss function. message LocalizationLoss { oneof localization_loss { WeightedL2LocalizationLoss weighted_l2 = 1; WeightedSmoothL1LocalizationLoss weighted_smooth_l1 = 2; WeightedIOULocalizationLoss weighted_iou = 3; } } // L2 location loss: 0.5 * ||weight * (a - b)|| ^ 2 message WeightedL2LocalizationLoss { // Output loss per anchor. optional bool anchorwise_output = 1 [default=false]; } // SmoothL1 (Huber) location loss: .5 * x ^ 2 if |x| < 1 else |x| - .5 message WeightedSmoothL1LocalizationLoss { // Output loss per anchor. optional bool anchorwise_output = 1 [default=false]; } // Intersection over union location loss: 1 - IOU message WeightedIOULocalizationLoss { } // Configuration for class prediction loss function. message ClassificationLoss { oneof classification_loss { WeightedSigmoidClassificationLoss weighted_sigmoid = 1; WeightedSoftmaxClassificationLoss weighted_softmax = 2; BootstrappedSigmoidClassificationLoss bootstrapped_sigmoid = 3; } } // Classification loss using a sigmoid function over class predictions. message WeightedSigmoidClassificationLoss { // Output loss per anchor. optional bool anchorwise_output = 1 [default=false]; } // Classification loss using a softmax function over class predictions. message WeightedSoftmaxClassificationLoss { // Output loss per anchor. optional bool anchorwise_output = 1 [default=false]; } // Classification loss using a sigmoid function over the class prediction with // the highest prediction score. message BootstrappedSigmoidClassificationLoss { // Interpolation weight between 0 and 1. optional float alpha = 1; // Whether hard boot strapping should be used or not. If true, will only use // one class favored by model. Othewise, will use all predicted class // probabilities. optional bool hard_bootstrap = 2 [default=false]; // Output loss per anchor. optional bool anchorwise_output = 3 [default=false]; } // Configuation for hard example miner. message HardExampleMiner { // Maximum number of hard examples to be selected per image (prior to // enforcing max negative to positive ratio constraint). If set to 0, // all examples obtained after NMS are considered. optional int32 num_hard_examples = 1 [default=64]; // Minimum intersection over union for an example to be discarded during NMS. optional float iou_threshold = 2 [default=0.7]; // Whether to use classification losses ('cls', default), localization losses // ('loc') or both losses ('both'). In the case of 'both', cls_loss_weight and // loc_loss_weight are used to compute weighted sum of the two losses. enum LossType { BOTH = 0; CLASSIFICATION = 1; LOCALIZATION = 2; } optional LossType loss_type = 3 [default=BOTH]; // Maximum number of negatives to retain for each positive anchor. If // num_negatives_per_positive is 0 no prespecified negative:positive ratio is // enforced. optional int32 max_negatives_per_positive = 4 [default=0]; // Minimum number of negative anchors to sample for a given image. Setting // this to a positive number samples negatives in an image without any // positive anchors and thus not bias the model towards having at least one // detection per image. optional int32 min_negatives_per_image = 5 [default=0]; }