nohup.out 97.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
2020-10-30 19:06:27.235259: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
Traceback (most recent call last):
  File "/opt/conda/lib/python3.7/runpy.py", line 183, in _run_module_as_main
    mod_name, mod_spec, code = _get_module_details(mod_name, _Error)
  File "/opt/conda/lib/python3.7/runpy.py", line 109, in _get_module_details
    __import__(pkg_name)
  File "/home/vbanna/tf-models/official/vision/beta/__init__.py", line 18, in <module>
    from official.vision.beta import configs
  File "/home/vbanna/tf-models/official/vision/beta/configs/__init__.py", line 18, in <module>
    from official.vision.beta.configs import image_classification
  File "/home/vbanna/tf-models/official/vision/beta/configs/image_classification.py", line 20, in <module>
    from official.core import exp_factory
  File "/home/vbanna/tf-models/official/core/exp_factory.py", line 19, in <module>
    from official.modeling.hyperparams import config_definitions as cfg
  File "/home/vbanna/tf-models/official/modeling/hyperparams/config_definitions.py", line 23, in <module>
    from official.modeling.optimization.configs import optimization_config
  File "/home/vbanna/tf-models/official/modeling/optimization/__init__.py", line 8, in <module>
    from official.modeling.optimization.optimizer_factory import OptimizerFactory
  File "/home/vbanna/tf-models/official/modeling/optimization/optimizer_factory.py", line 21, in <module>
    import tensorflow_addons.optimizers as tfa_optimizers
ModuleNotFoundError: No module named 'tensorflow_addons'
2020-10-30 19:08:43.755187: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1
I1030 19:08:45.768239 139885496419712 train_utils.py:106] Final experiment parameters: {'runtime': {'all_reduce_alg': None,
             'batchnorm_spatial_persistent': False,
             'dataset_num_private_threads': None,
             'default_shard_dim': -1,
             'distribution_strategy': 'mirrored',
             'enable_xla': False,
             'gpu_thread_mode': None,
             'loss_scale': 'dynamic',
             'mixed_precision_dtype': 'float16',
             'num_cores_per_replica': 1,
             'num_gpus': 2,
             'num_packs': 1,
             'per_gpu_thread_count': 0,
             'run_eagerly': False,
             'task_index': -1,
             'tpu': None,
             'worker_hosts': None},
 'task': {'annotation_file': None,
          'gradient_clip_norm': 0.0,
          'init_checkpoint': None,
          'init_checkpoint_modules': 'backbone',
          'losses': {'box_loss_weight': 50,
                     'focal_loss_alpha': 0.25,
                     'focal_loss_gamma': 1.5,
                     'huber_loss_delta': 0.1,
                     'l2_weight_decay': 0.0001},
          'model': {'anchor': {'anchor_size': 4.0,
                               'aspect_ratios': [0.5, 1.0, 2.0],
                               'num_scales': 3},
                    'backbone': {'resnet': {'model_id': 50}, 'type': 'resnet'},
                    'decoder': {'fpn': {'num_filters': 256,
                                        'use_separable_conv': False},
                                'type': 'fpn'},
                    'detection_generator': {'max_num_detections': 100,
                                            'nms_iou_threshold': 0.5,
                                            'pre_nms_score_threshold': 0.05,
                                            'pre_nms_top_k': 5000,
                                            'use_batched_nms': False},
                    'head': {'num_convs': 4,
                             'num_filters': 256,
                             'use_separable_conv': False},
                    'input_size': [640, 640, 3],
                    'max_level': 7,
                    'min_level': 3,
                    'norm_activation': {'activation': 'relu',
                                        'norm_epsilon': 0.001,
                                        'norm_momentum': 0.99,
                                        'use_sync_bn': False},
                    'num_classes': 80},
          'train_data': {'block_length': 1,
                         'cache': False,
                         'cycle_length': 5,
                         'decoder': {'tfds_decoder': {'regenerate_source_id': False},
                                     'type': 'tfds_decoder'},
                         'deterministic': None,
                         'drop_remainder': True,
                         'dtype': 'float16',
                         'enable_tf_data_service': False,
                         'global_batch_size': 16,
                         'input_path': None,
                         'is_training': True,
                         'parser': {'aug_rand_hflip': True,
                                    'aug_scale_max': 2.0,
                                    'aug_scale_min': 0.5,
                                    'match_threshold': 0.5,
                                    'max_num_instances': 100,
                                    'num_channels': 3,
                                    'skip_crowd_during_training': True,
                                    'unmatched_threshold': 0.5},
                         'sharding': True,
                         'shuffle_buffer_size': 2,
                         'tf_data_service_address': None,
                         'tf_data_service_job_name': None,
                         'tfds_as_supervised': False,
                         'tfds_data_dir': '',
                         'tfds_download': True,
                         'tfds_name': 'coco/2017',
                         'tfds_skip_decoding_feature': '',
                         'tfds_split': 'train'},
          'validation_data': {'block_length': 1,
                              'cache': False,
                              'cycle_length': 10,
                              'decoder': {'tfds_decoder': {'regenerate_source_id': False},
                                          'type': 'tfds_decoder'},
                              'deterministic': None,
                              'drop_remainder': True,
                              'dtype': 'float16',
                              'enable_tf_data_service': False,
                              'global_batch_size': 16,
                              'input_path': None,
                              'is_training': False,
                              'parser': {'aug_rand_hflip': False,
                                         'aug_scale_max': 1.0,
                                         'aug_scale_min': 1.0,
                                         'match_threshold': 0.5,
                                         'max_num_instances': 100,
                                         'num_channels': 3,
                                         'skip_crowd_during_training': True,
                                         'unmatched_threshold': 0.5},
                              'sharding': True,
                              'shuffle_buffer_size': 2,
                              'tf_data_service_address': None,
                              'tf_data_service_job_name': None,
                              'tfds_as_supervised': False,
                              'tfds_data_dir': '',
                              'tfds_download': True,
                              'tfds_name': 'coco/2017',
                              'tfds_skip_decoding_feature': '',
                              'tfds_split': 'validation'}},
 'trainer': {'allow_tpu_summary': False,
             'best_checkpoint_eval_metric': '',
             'best_checkpoint_export_subdir': '',
             'best_checkpoint_metric_comp': 'higher',
             'checkpoint_interval': 7392,
             'continuous_eval_timeout': 3600,
             'eval_tf_function': True,
             'max_to_keep': 5,
             'optimizer_config': {'ema': None,
                                  'learning_rate': {'stepwise': {'boundaries': [421344,
                                                                                495264],
                                                                 'name': 'PiecewiseConstantDecay',
                                                                 'values': [0.0175,
                                                                            0.00175,
                                                                            0.000175]},
                                                    'type': 'stepwise'},
                                  'optimizer': {'sgd': {'clipnorm': None,
                                                        'clipvalue': None,
                                                        'decay': 0.0,
                                                        'momentum': 0.9,
                                                        'name': 'SGD',
                                                        'nesterov': False},
                                                'type': 'sgd'},
                                  'warmup': {'linear': {'name': 'linear',
                                                        'warmup_learning_rate': 0.0067,
                                                        'warmup_steps': 500},
                                             'type': 'linear'}},
             'steps_per_loop': 7392,
             'summary_interval': 7392,
             'train_steps': 532224,
             'train_tf_function': True,
             'train_tf_while_loop': True,
             'validation_interval': 2000,
             'validation_steps': 1564}}
I1030 19:08:45.768540 139885496419712 train_utils.py:115] Saving experiment configuration to training_dir/params.yaml
2020-10-30 19:08:45.783558: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcuda.so.1
2020-10-30 19:08:46.766930: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:46.767979: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties: 
pciBusID: 0000:00:04.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
2020-10-30 19:08:46.768062: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:46.769061: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 1 with properties: 
pciBusID: 0000:00:05.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
2020-10-30 19:08:46.769111: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1
2020-10-30 19:08:46.771428: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10
2020-10-30 19:08:46.773310: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcufft.so.10
2020-10-30 19:08:46.773611: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcurand.so.10
2020-10-30 19:08:46.775726: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusolver.so.10
2020-10-30 19:08:46.776841: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusparse.so.10
2020-10-30 19:08:46.781620: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7
2020-10-30 19:08:46.781722: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:46.782745: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:46.783768: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:46.784781: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:46.785793: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1858] Adding visible gpu devices: 0, 1
2020-10-30 19:08:46.786167: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the following CPU instructions in performance-critical operations:  AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2020-10-30 19:08:46.796393: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2200000000 Hz
2020-10-30 19:08:46.797730: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55b5dbc08730 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-10-30 19:08:46.797757: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
2020-10-30 19:08:46.996238: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:46.998987: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:47.000171: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55b5dbc74b30 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2020-10-30 19:08:47.000199: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Tesla P100-PCIE-16GB, Compute Capability 6.0
2020-10-30 19:08:47.000208: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (1): Tesla P100-PCIE-16GB, Compute Capability 6.0
2020-10-30 19:08:47.000736: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:47.001752: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties: 
pciBusID: 0000:00:04.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
2020-10-30 19:08:47.001840: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:47.002787: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 1 with properties: 
pciBusID: 0000:00:05.0 name: Tesla P100-PCIE-16GB computeCapability: 6.0
coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 15.90GiB deviceMemoryBandwidth: 681.88GiB/s
2020-10-30 19:08:47.002819: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1
2020-10-30 19:08:47.002852: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10
2020-10-30 19:08:47.002872: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcufft.so.10
2020-10-30 19:08:47.002893: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcurand.so.10
2020-10-30 19:08:47.002912: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusolver.so.10
2020-10-30 19:08:47.002942: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusparse.so.10
2020-10-30 19:08:47.002963: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7
2020-10-30 19:08:47.003028: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:47.004093: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:47.005124: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:47.006119: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:47.007080: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1858] Adding visible gpu devices: 0, 1
2020-10-30 19:08:47.007162: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1
2020-10-30 19:08:48.517733: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1257] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-10-30 19:08:48.517799: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1263]      0 1 
2020-10-30 19:08:48.517809: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1276] 0:   N N 
2020-10-30 19:08:48.517815: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1276] 1:   N N 
2020-10-30 19:08:48.518120: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:48.519212: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:48.520219: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:48.521275: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1402] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 14951 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, pci bus id: 0000:00:04.0, compute capability: 6.0)
2020-10-30 19:08:48.521948: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:48.522918: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1402] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 14951 MB memory) -> physical GPU (device: 1, name: Tesla P100-PCIE-16GB, pci bus id: 0000:00:05.0, compute capability: 6.0)
2020-10-30 19:08:48.829361: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-10-30 19:08:48.830101: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
WARNING:tensorflow:Mixed precision compatibility check (mixed_float16): WARNING
Your GPUs may run slowly with dtype policy mixed_float16 because they do not have compute capability of at least 7.0. Your GPUs:
  Tesla P100-PCIE-16GB, compute capability 6.0 (x2)
See https://developer.nvidia.com/cuda-gpus for a list of GPUs and their compute capabilities.
If you will use compatible GPU(s) not attached to this host, e.g. by running a multi-worker model, you can ignore this warning. This message will only be logged once
W1030 19:08:48.833126 139885496419712 device_compatibility_check.py:111] Mixed precision compatibility check (mixed_float16): WARNING
Your GPUs may run slowly with dtype policy mixed_float16 because they do not have compute capability of at least 7.0. Your GPUs:
  Tesla P100-PCIE-16GB, compute capability 6.0 (x2)
See https://developer.nvidia.com/cuda-gpus for a list of GPUs and their compute capabilities.
If you will use compatible GPU(s) not attached to this host, e.g. by running a multi-worker model, you can ignore this warning. This message will only be logged once
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1')
I1030 19:08:48.835364 139885496419712 mirrored_strategy.py:341] Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1')
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.179665 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.185065 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.191244 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.196064 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.220396 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.224822 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.384853 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.389641 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.395605 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:49.400318 139885496419712 cross_device_ops.py:443] Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
I1030 19:08:54.437170 139885496419712 train_lib.py:139] Not exporting the best checkpoint. data_dir: training_dir, export_subdir: , metric_name: 
I1030 19:08:54.437393 139885496419712 train_utils.py:44] Running default trainer.
I1030 19:08:54.534491 139885496419712 dataset_info.py:361] Load dataset info from /home/vbanna/tensorflow_datasets/coco/2017/1.1.0
I1030 19:08:54.537066 139885496419712 dataset_builder.py:299] Reusing dataset coco (/home/vbanna/tensorflow_datasets/coco/2017/1.1.0)
I1030 19:08:54.537193 139885496419712 dataset_builder.py:511] Constructing tf.data.Dataset for split train, from /home/vbanna/tensorflow_datasets/coco/2017/1.1.0
I1030 19:08:59.088062 139885496419712 dataset_info.py:361] Load dataset info from /home/vbanna/tensorflow_datasets/coco/2017/1.1.0
I1030 19:08:59.090812 139885496419712 dataset_builder.py:299] Reusing dataset coco (/home/vbanna/tensorflow_datasets/coco/2017/1.1.0)
I1030 19:08:59.090951 139885496419712 dataset_builder.py:511] Constructing tf.data.Dataset for split validation, from /home/vbanna/tensorflow_datasets/coco/2017/1.1.0
I1030 19:09:00.456362 139885496419712 train_lib.py:206] Starts to execute mode: train_and_eval
I1030 19:09:00.457955 139885496419712 controller.py:167] Train at step 0 of 2000
I1030 19:09:00.459034 139885496419712 controller.py:334] Entering training loop at step 0 to run 2000 steps
INFO:tensorflow:batch_all_reduce: 285 all-reduces with algorithm = nccl, num_packs = 1
I1030 19:09:12.923888 139885496419712 cross_device_ops.py:702] batch_all_reduce: 285 all-reduces with algorithm = nccl, num_packs = 1
INFO:tensorflow:batch_all_reduce: 285 all-reduces with algorithm = nccl, num_packs = 1
I1030 19:09:33.195622 139885496419712 cross_device_ops.py:702] batch_all_reduce: 285 all-reduces with algorithm = nccl, num_packs = 1
2020-10-30 19:10:08.985502: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7
2020-10-30 19:10:10.958205: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10
I1030 19:31:48.572363 139885496419712 controller.py:32] step: 2000        steps_per_second: 1.46        {'total_loss': 2.952513, 'cls_loss': 1.0308509, 'box_loss': 0.009998905, 'model_loss': 1.5307966, 'training_loss': 2.952513, 'learning_rate': 0.0175}
I1030 19:31:49.536207 139885496419712 controller.py:381] Saved checkpoints in training_dir/ckpt-2000
I1030 19:31:49.537605 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 2000
I1030 20:03:47.641623 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1030 20:06:02.119477 139885496419712 controller.py:32] step: 2000        evaluation metric: {'total_loss': 2.7545106, 'cls_loss': 0.9337675, 'box_loss': 0.0088655995, 'model_loss': 1.3770468, 'validation_loss': 2.7545106, 'AP': 0.0066075507, 'AP50': 0.016931148, 'AP75': 0.0040874337, 'APs': 0.00055430405, 'APm': 0.004762264, 'APl': 0.009988218, 'ARmax1': 0.04598566, 'ARmax10': 0.079140015, 'ARmax100': 0.08211258, 'ARs': 0.003963818, 'ARm': 0.03661192, 'ARl': 0.13360435}
I1030 20:06:02.146182 139885496419712 controller.py:167] Train at step 2000 of 4000
I1030 20:06:02.146733 139885496419712 controller.py:334] Entering training loop at step 2000 to run 2000 steps
I1030 20:27:36.706292 139885496419712 controller.py:32] step: 4000        steps_per_second: 0.60        {'total_loss': 2.6101823, 'cls_loss': 0.8718026, 'box_loss': 0.008097591, 'model_loss': 1.2766824, 'training_loss': 2.6101823, 'learning_rate': 0.0175}
I1030 20:27:36.717345 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 4000
I1030 20:57:40.566221 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1030 21:00:01.935145 139885496419712 controller.py:32] step: 4000        evaluation metric: {'total_loss': 2.5162745, 'cls_loss': 0.8355965, 'box_loss': 0.0078043677, 'model_loss': 1.225815, 'validation_loss': 2.5162745, 'AP': 0.021224046, 'AP50': 0.044965032, 'AP75': 0.017090354, 'APs': 0.0025279159, 'APm': 0.015290717, 'APl': 0.03299058, 'ARmax1': 0.07679166, 'ARmax10': 0.13622928, 'ARmax100': 0.14035718, 'ARs': 0.013522613, 'ARm': 0.09343928, 'ARl': 0.222368}
I1030 21:00:01.974603 139885496419712 controller.py:167] Train at step 4000 of 6000
I1030 21:00:01.975189 139885496419712 controller.py:334] Entering training loop at step 4000 to run 2000 steps
I1030 21:21:35.986476 139885496419712 controller.py:32] step: 6000        steps_per_second: 0.62        {'total_loss': 2.4335802, 'cls_loss': 0.81078637, 'box_loss': 0.0074549178, 'model_loss': 1.183532, 'training_loss': 2.4335802, 'learning_rate': 0.0175}
I1030 21:21:35.996690 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 6000
I1030 21:51:36.730204 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1030 21:54:01.907360 139885496419712 controller.py:32] step: 6000        evaluation metric: {'total_loss': 2.3840065, 'cls_loss': 0.8075656, 'box_loss': 0.0073272684, 'model_loss': 1.1739291, 'validation_loss': 2.3840065, 'AP': 0.028316734, 'AP50': 0.0557604, 'AP75': 0.025625333, 'APs': 0.0040961187, 'APm': 0.021599174, 'APl': 0.042726006, 'ARmax1': 0.0904667, 'ARmax10': 0.15265372, 'ARmax100': 0.15850124, 'ARs': 0.021724917, 'ARm': 0.13395934, 'ARl': 0.23424989}
I1030 21:54:01.934641 139885496419712 controller.py:167] Train at step 6000 of 8000
I1030 21:54:01.935158 139885496419712 controller.py:334] Entering training loop at step 6000 to run 2000 steps
I1030 22:15:35.174637 139885496419712 controller.py:32] step: 8000        steps_per_second: 0.62        {'total_loss': 2.288062, 'cls_loss': 0.76706284, 'box_loss': 0.00698252, 'model_loss': 1.1161889, 'training_loss': 2.288062, 'learning_rate': 0.0175}
I1030 22:15:35.184676 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 8000
I1030 22:45:35.542509 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1030 22:47:53.906541 139885496419712 controller.py:32] step: 8000        evaluation metric: {'total_loss': 2.2552168, 'cls_loss': 0.76536787, 'box_loss': 0.0071057146, 'model_loss': 1.1206533, 'validation_loss': 2.2552168, 'AP': 0.04372218, 'AP50': 0.084751606, 'AP75': 0.040151175, 'APs': 0.00746491, 'APm': 0.037402872, 'APl': 0.06688058, 'ARmax1': 0.11082497, 'ARmax10': 0.1863409, 'ARmax100': 0.19500773, 'ARs': 0.03183885, 'ARm': 0.17150564, 'ARl': 0.28622577}
I1030 22:47:53.939067 139885496419712 controller.py:167] Train at step 8000 of 10000
I1030 22:47:53.939667 139885496419712 controller.py:334] Entering training loop at step 8000 to run 2000 steps
I1030 23:09:27.526988 139885496419712 controller.py:32] step: 10000        steps_per_second: 0.62        {'total_loss': 2.1607676, 'cls_loss': 0.7287942, 'box_loss': 0.006658137, 'model_loss': 1.0617015, 'training_loss': 2.1607676, 'learning_rate': 0.0175}
I1030 23:09:28.357703 139885496419712 controller.py:381] Saved checkpoints in training_dir/ckpt-10000
I1030 23:09:28.359310 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 10000
I1030 23:39:30.371847 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
step: 2000        steps_per_second: 1.46        {'total_loss': 2.952513, 'cls_loss': 1.0308509, 'box_loss': 0.009998905, 'model_loss': 1.5307966, 'training_loss': 2.952513, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=90.15s).
Accumulating evaluation results...
DONE (t=15.30s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.007
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.017
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.004
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.005
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.010
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.046
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.079
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.082
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.004
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.037
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.134
step: 2000        evaluation metric: {'total_loss': 2.7545106, 'cls_loss': 0.9337675, 'box_loss': 0.0088655995, 'model_loss': 1.3770468, 'validation_loss': 2.7545106, 'AP': 0.0066075507, 'AP50': 0.016931148, 'AP75': 0.0040874337, 'APs': 0.00055430405, 'APm': 0.004762264, 'APl': 0.009988218, 'ARmax1': 0.04598566, 'ARmax10': 0.079140015, 'ARmax100': 0.08211258, 'ARs': 0.003963818, 'ARm': 0.03661192, 'ARl': 0.13360435}
step: 4000        steps_per_second: 0.60        {'total_loss': 2.6101823, 'cls_loss': 0.8718026, 'box_loss': 0.008097591, 'model_loss': 1.2766824, 'training_loss': 2.6101823, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=93.47s).
Accumulating evaluation results...
DONE (t=18.72s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.021
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.045
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.017
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.003
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.015
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.033
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.077
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.136
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.140
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.014
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.093
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.222
step: 4000        evaluation metric: {'total_loss': 2.5162745, 'cls_loss': 0.8355965, 'box_loss': 0.0078043677, 'model_loss': 1.225815, 'validation_loss': 2.5162745, 'AP': 0.021224046, 'AP50': 0.044965032, 'AP75': 0.017090354, 'APs': 0.0025279159, 'APm': 0.015290717, 'APl': 0.03299058, 'ARmax1': 0.07679166, 'ARmax10': 0.13622928, 'ARmax100': 0.14035718, 'ARs': 0.013522613, 'ARm': 0.09343928, 'ARl': 0.222368}
step: 6000        steps_per_second: 0.62        {'total_loss': 2.4335802, 'cls_loss': 0.81078637, 'box_loss': 0.0074549178, 'model_loss': 1.183532, 'training_loss': 2.4335802, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=103.30s).
Accumulating evaluation results...
DONE (t=15.17s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.028
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.056
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.026
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.004
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.022
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.043
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.090
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.153
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.159
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.022
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.134
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.234
step: 6000        evaluation metric: {'total_loss': 2.3840065, 'cls_loss': 0.8075656, 'box_loss': 0.0073272684, 'model_loss': 1.1739291, 'validation_loss': 2.3840065, 'AP': 0.028316734, 'AP50': 0.0557604, 'AP75': 0.025625333, 'APs': 0.0040961187, 'APm': 0.021599174, 'APl': 0.042726006, 'ARmax1': 0.0904667, 'ARmax10': 0.15265372, 'ARmax100': 0.15850124, 'ARs': 0.021724917, 'ARm': 0.13395934, 'ARl': 0.23424989}
step: 8000        steps_per_second: 0.62        {'total_loss': 2.288062, 'cls_loss': 0.76706284, 'box_loss': 0.00698252, 'model_loss': 1.1161889, 'training_loss': 2.288062, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=95.07s).
Accumulating evaluation results...
DONE (t=14.88s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.044
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.085
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.040
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.007
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.037
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.067
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.111
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.186
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.195
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.032
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.172
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.286
step: 8000        evaluation metric: {'total_loss': 2.2552168, 'cls_loss': 0.76536787, 'box_loss': 0.0071057146, 'model_loss': 1.1206533, 'validation_loss': 2.2552168, 'AP': 0.04372218, 'AP50': 0.084751606, 'AP75': 0.040151175, 'APs': 0.00746491, 'APm': 0.037402872, 'APl': 0.06688058, 'ARmax1': 0.11082497, 'ARmax10': 0.1863409, 'ARmax100': 0.19500773, 'ARs': 0.03183885, 'ARm': 0.17150564, 'ARl': 0.28622577}
step: 10000        steps_per_second: 0.62        {'total_loss': 2.1607676, 'cls_loss': 0.7287942, 'box_loss': 0.006658137, 'model_loss': 1.0617015, 'training_loss': 2.1607676, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=95.23s).
Accumulating evaluation results...
DONE (t=14.89s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.054
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.101
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.053
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.008
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.045
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.084
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.123
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.206
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.214I1030 23:41:48.419408 139885496419712 controller.py:32] step: 10000        evaluation metric: {'total_loss': 2.1264522, 'cls_loss': 0.72794926, 'box_loss': 0.006682801, 'model_loss': 1.0620897, 'validation_loss': 2.1264522, 'AP': 0.054195903, 'AP50': 0.10130227, 'AP75': 0.052946668, 'APs': 0.008050608, 'APm': 0.04529771, 'APl': 0.08441855, 'ARmax1': 0.122621804, 'ARmax10': 0.20553222, 'ARmax100': 0.21406764, 'ARs': 0.0369188, 'ARm': 0.19431876, 'ARl': 0.32154137}
I1030 23:41:48.448698 139885496419712 controller.py:167] Train at step 10000 of 12000
I1030 23:41:48.449317 139885496419712 controller.py:334] Entering training loop at step 10000 to run 2000 steps
I1031 00:03:22.028709 139885496419712 controller.py:32] step: 12000        steps_per_second: 0.62        {'total_loss': 2.0662794, 'cls_loss': 0.7089585, 'box_loss': 0.0065142633, 'model_loss': 1.0346715, 'training_loss': 2.0662794, 'learning_rate': 0.0175}
I1031 00:03:22.039475 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 12000
I1031 00:33:23.688980 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 00:35:45.345192 139885496419712 controller.py:32] step: 12000        evaluation metric: {'total_loss': 2.0662136, 'cls_loss': 0.7376824, 'box_loss': 0.006583337, 'model_loss': 1.066849, 'validation_loss': 2.0662136, 'AP': 0.059586268, 'AP50': 0.11119602, 'AP75': 0.05633912, 'APs': 0.011301484, 'APm': 0.052767806, 'APl': 0.089686915, 'ARmax1': 0.12972695, 'ARmax10': 0.21874677, 'ARmax100': 0.22815393, 'ARs': 0.041254662, 'ARm': 0.19183718, 'ARl': 0.3477511}
I1031 00:35:45.385468 139885496419712 controller.py:167] Train at step 12000 of 14000
I1031 00:35:45.386043 139885496419712 controller.py:334] Entering training loop at step 12000 to run 2000 steps
I1031 00:57:18.957478 139885496419712 controller.py:32] step: 14000        steps_per_second: 0.62        {'total_loss': 1.969025, 'cls_loss': 0.6870775, 'box_loss': 0.00626731, 'model_loss': 1.0004433, 'training_loss': 1.969025, 'learning_rate': 0.0175}
I1031 00:57:18.968271 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 14000
I1031 01:27:21.231963 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 01:29:44.961457 139885496419712 controller.py:32] step: 14000        evaluation metric: {'total_loss': 1.9750702, 'cls_loss': 0.7104824, 'box_loss': 0.0065220655, 'model_loss': 1.0365856, 'validation_loss': 1.9750702, 'AP': 0.06698314, 'AP50': 0.12553436, 'AP75': 0.06383309, 'APs': 0.012342103, 'APm': 0.05755333, 'APl': 0.10402489, 'ARmax1': 0.13613912, 'ARmax10': 0.2210759, 'ARmax100': 0.23037915, 'ARs': 0.042005893, 'ARm': 0.20071448, 'ARl': 0.3492529}
I1031 01:29:44.993362 139885496419712 controller.py:167] Train at step 14000 of 16000
I1031 01:29:44.994000 139885496419712 controller.py:334] Entering training loop at step 14000 to run 2000 steps
I1031 01:51:18.396526 139885496419712 controller.py:32] step: 16000        steps_per_second: 0.62        {'total_loss': 1.8947617, 'cls_loss': 0.67529494, 'box_loss': 0.006190216, 'model_loss': 0.9848059, 'training_loss': 1.8947617, 'learning_rate': 0.0175}
I1031 01:51:18.406329 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 16000
I1031 02:21:20.922477 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 02:23:47.485918 139885496419712 controller.py:32] step: 16000        evaluation metric: {'total_loss': 1.9796606, 'cls_loss': 0.78193307, 'box_loss': 0.0063071055, 'model_loss': 1.0972879, 'validation_loss': 1.9796606, 'AP': 0.065123744, 'AP50': 0.11864428, 'AP75': 0.06447318, 'APs': 0.015601997, 'APm': 0.06371723, 'APl': 0.093020916, 'ARmax1': 0.12038191, 'ARmax10': 0.20010678, 'ARmax100': 0.2089182, 'ARs': 0.046627745, 'ARm': 0.20985255, 'ARl': 0.26905948}
I1031 02:23:47.515874 139885496419712 controller.py:167] Train at step 16000 of 18000
I1031 02:23:47.516430 139885496419712 controller.py:334] Entering training loop at step 16000 to run 2000 steps
I1031 02:45:21.368029 139885496419712 controller.py:32] step: 18000        steps_per_second: 0.62        {'total_loss': 1.8081924, 'cls_loss': 0.65352744, 'box_loss': 0.0059808283, 'model_loss': 0.95256877, 'training_loss': 1.8081924, 'learning_rate': 0.0175}
I1031 02:45:22.204224 139885496419712 controller.py:381] Saved checkpoints in training_dir/ckpt-18000
I1031 02:45:22.205612 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 18000
I1031 03:15:22.550125 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 03:17:51.459395 139885496419712 controller.py:32] step: 18000        evaluation metric: {'total_loss': 1.8092948, 'cls_loss': 0.6702564, 'box_loss': 0.006191191, 'model_loss': 0.97981566, 'validation_loss': 1.8092948, 'AP': 0.084427126, 'AP50': 0.15396488, 'AP75': 0.08334383, 'APs': 0.020888355, 'APm': 0.072113805, 'APl': 0.1291615, 'ARmax1': 0.15485245, 'ARmax10': 0.25424233, 'ARmax100': 0.26476988, 'ARs': 0.05902366, 'ARm': 0.24243225, 'ARl': 0.39029872}
I1031 03:17:51.488985 139885496419712 controller.py:167] Train at step 18000 of 20000
I1031 03:17:51.489529 139885496419712 controller.py:334] Entering training loop at step 18000 to run 2000 steps
I1031 03:39:24.790594 139885496419712 controller.py:32] step: 20000        steps_per_second: 0.62        {'total_loss': 1.7407566, 'cls_loss': 0.6418706, 'box_loss': 0.0058854446, 'model_loss': 0.93614256, 'training_loss': 1.7407566, 'learning_rate': 0.0175}
I1031 03:39:24.801592 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 20000
I1031 04:09:25.722967 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.

 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.037
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.194
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.322
step: 10000        evaluation metric: {'total_loss': 2.1264522, 'cls_loss': 0.72794926, 'box_loss': 0.006682801, 'model_loss': 1.0620897, 'validation_loss': 2.1264522, 'AP': 0.054195903, 'AP50': 0.10130227, 'AP75': 0.052946668, 'APs': 0.008050608, 'APm': 0.04529771, 'APl': 0.08441855, 'ARmax1': 0.122621804, 'ARmax10': 0.20553222, 'ARmax100': 0.21406764, 'ARs': 0.0369188, 'ARm': 0.19431876, 'ARl': 0.32154137}
step: 12000        steps_per_second: 0.62        {'total_loss': 2.0662794, 'cls_loss': 0.7089585, 'box_loss': 0.0065142633, 'model_loss': 1.0346715, 'training_loss': 2.0662794, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=97.03s).
Accumulating evaluation results...
DONE (t=18.19s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.060
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.111
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.056
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.011
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.053
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.090
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.130
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.219
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.228
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.041
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.192
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.348
step: 12000        evaluation metric: {'total_loss': 2.0662136, 'cls_loss': 0.7376824, 'box_loss': 0.006583337, 'model_loss': 1.066849, 'validation_loss': 2.0662136, 'AP': 0.059586268, 'AP50': 0.11119602, 'AP75': 0.05633912, 'APs': 0.011301484, 'APm': 0.052767806, 'APl': 0.089686915, 'ARmax1': 0.12972695, 'ARmax10': 0.21874677, 'ARmax100': 0.22815393, 'ARs': 0.041254662, 'ARm': 0.19183718, 'ARl': 0.3477511}
step: 14000        steps_per_second: 0.62        {'total_loss': 1.969025, 'cls_loss': 0.6870775, 'box_loss': 0.00626731, 'model_loss': 1.0004433, 'training_loss': 1.969025, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=103.28s).
Accumulating evaluation results...
DONE (t=14.10s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.067
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.126
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.064
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.012
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.058
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.104
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.136
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.221
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.230
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.042
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.201
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.349
step: 14000        evaluation metric: {'total_loss': 1.9750702, 'cls_loss': 0.7104824, 'box_loss': 0.0065220655, 'model_loss': 1.0365856, 'validation_loss': 1.9750702, 'AP': 0.06698314, 'AP50': 0.12553436, 'AP75': 0.06383309, 'APs': 0.012342103, 'APm': 0.05755333, 'APl': 0.10402489, 'ARmax1': 0.13613912, 'ARmax10': 0.2210759, 'ARmax100': 0.23037915, 'ARs': 0.042005893, 'ARm': 0.20071448, 'ARl': 0.3492529}
step: 16000        steps_per_second: 0.62        {'total_loss': 1.8947617, 'cls_loss': 0.67529494, 'box_loss': 0.006190216, 'model_loss': 0.9848059, 'training_loss': 1.8947617, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=105.23s).
Accumulating evaluation results...
DONE (t=13.30s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.065
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.119
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.064
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.016
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.064
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.093
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.120
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.200
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.209
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.047
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.210
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.269
step: 16000        evaluation metric: {'total_loss': 1.9796606, 'cls_loss': 0.78193307, 'box_loss': 0.0063071055, 'model_loss': 1.0972879, 'validation_loss': 1.9796606, 'AP': 0.065123744, 'AP50': 0.11864428, 'AP75': 0.06447318, 'APs': 0.015601997, 'APm': 0.06371723, 'APl': 0.093020916, 'ARmax1': 0.12038191, 'ARmax10': 0.20010678, 'ARmax100': 0.2089182, 'ARs': 0.046627745, 'ARm': 0.20985255, 'ARl': 0.26905948}
step: 18000        steps_per_second: 0.62        {'total_loss': 1.8081924, 'cls_loss': 0.65352744, 'box_loss': 0.0059808283, 'model_loss': 0.95256877, 'training_loss': 1.8081924, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=103.97s).
Accumulating evaluation results...
DONE (t=15.19s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.084
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.154
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.083
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.021
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.072
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.129
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.155
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.254
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.265
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.059
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.242
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.390
step: 18000        evaluation metric: {'total_loss': 1.8092948, 'cls_loss': 0.6702564, 'box_loss': 0.006191191, 'model_loss': 0.97981566, 'validation_loss': 1.8092948, 'AP': 0.084427126, 'AP50': 0.15396488, 'AP75': 0.08334383, 'APs': 0.020888355, 'APm': 0.072113805, 'APl': 0.1291615, 'ARmax1': 0.15485245, 'ARmax10': 0.25424233, 'ARmax100': 0.26476988, 'ARs': 0.05902366, 'ARm': 0.24243225, 'ARl': 0.39029872}
step: 20000        steps_per_second: 0.62        {'total_loss': 1.7407566, 'cls_loss': 0.6418706, 'box_loss': 0.0058854446, 'model_loss': 0.93614256, 'training_loss': 1.7407566, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=95.65s).
Accumulating evaluation results...
DONE (t=13.85s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.093I1031 04:11:42.257416 139885496419712 controller.py:32] step: 20000        evaluation metric: {'total_loss': 1.7365601, 'cls_loss': 0.6543167, 'box_loss': 0.0060396246, 'model_loss': 0.9562982, 'validation_loss': 1.7365601, 'AP': 0.09287657, 'AP50': 0.16696998, 'AP75': 0.091831, 'APs': 0.016764913, 'APm': 0.08103716, 'APl': 0.14146243, 'ARmax1': 0.15737882, 'ARmax10': 0.25748417, 'ARmax100': 0.27028137, 'ARs': 0.050834853, 'ARm': 0.250391, 'ARl': 0.4025708}
I1031 04:11:42.288806 139885496419712 controller.py:167] Train at step 20000 of 22000
I1031 04:11:42.289491 139885496419712 controller.py:334] Entering training loop at step 20000 to run 2000 steps
I1031 04:33:16.587417 139885496419712 controller.py:32] step: 22000        steps_per_second: 0.62        {'total_loss': 1.6866505, 'cls_loss': 0.6370228, 'box_loss': 0.00584322, 'model_loss': 0.9291848, 'training_loss': 1.6866505, 'learning_rate': 0.0175}
I1031 04:33:16.598840 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 22000
I1031 05:03:17.182420 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 05:05:34.372040 139885496419712 controller.py:32] step: 22000        evaluation metric: {'total_loss': 1.689145, 'cls_loss': 0.6559819, 'box_loss': 0.0059656464, 'model_loss': 0.95426446, 'validation_loss': 1.689145, 'AP': 0.097518176, 'AP50': 0.17676663, 'AP75': 0.09696455, 'APs': 0.024464171, 'APm': 0.08607653, 'APl': 0.14655727, 'ARmax1': 0.16281688, 'ARmax10': 0.2641258, 'ARmax100': 0.27565268, 'ARs': 0.070531555, 'ARm': 0.26941356, 'ARl': 0.3862451}
I1031 05:05:34.408134 139885496419712 controller.py:167] Train at step 22000 of 24000
I1031 05:05:34.408637 139885496419712 controller.py:334] Entering training loop at step 22000 to run 2000 steps
I1031 05:27:08.061284 139885496419712 controller.py:32] step: 24000        steps_per_second: 0.62        {'total_loss': 1.617964, 'cls_loss': 0.6204008, 'box_loss': 0.00568443, 'model_loss': 0.90462315, 'training_loss': 1.617964, 'learning_rate': 0.0175}
I1031 05:27:08.071365 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 24000
I1031 05:57:07.937834 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 05:59:30.306594 139885496419712 controller.py:32] step: 24000        evaluation metric: {'total_loss': 1.6017793, 'cls_loss': 0.6207918, 'box_loss': 0.005774223, 'model_loss': 0.9095029, 'validation_loss': 1.6017793, 'AP': 0.1170256, 'AP50': 0.20438606, 'AP75': 0.11793307, 'APs': 0.024898289, 'APm': 0.09308181, 'APl': 0.1858881, 'ARmax1': 0.17547216, 'ARmax10': 0.286284, 'ARmax100': 0.30100176, 'ARs': 0.072808474, 'ARm': 0.28913948, 'ARl': 0.43568316}
I1031 05:59:30.340992 139885496419712 controller.py:167] Train at step 24000 of 26000
I1031 05:59:30.341486 139885496419712 controller.py:334] Entering training loop at step 24000 to run 2000 steps
I1031 06:21:05.103114 139885496419712 controller.py:32] step: 26000        steps_per_second: 0.62        {'total_loss': 1.5680726, 'cls_loss': 0.6153645, 'box_loss': 0.0056095384, 'model_loss': 0.8958406, 'training_loss': 1.5680726, 'learning_rate': 0.0175}
I1031 06:21:05.891192 139885496419712 controller.py:381] Saved checkpoints in training_dir/ckpt-26000
I1031 06:21:05.892592 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 26000
I1031 06:51:07.122737 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 06:53:27.149734 139885496419712 controller.py:32] step: 26000        evaluation metric: {'total_loss': 1.5675296, 'cls_loss': 0.62697786, 'box_loss': 0.0057582282, 'model_loss': 0.91488904, 'validation_loss': 1.5675296, 'AP': 0.1090435, 'AP50': 0.19172487, 'AP75': 0.10934281, 'APs': 0.019161979, 'APm': 0.093128696, 'APl': 0.16513485, 'ARmax1': 0.1705256, 'ARmax10': 0.27630976, 'ARmax100': 0.2891266, 'ARs': 0.06790081, 'ARm': 0.2806543, 'ARl': 0.40896055}
I1031 06:53:27.187281 139885496419712 controller.py:167] Train at step 26000 of 28000
I1031 06:53:27.187832 139885496419712 controller.py:334] Entering training loop at step 26000 to run 2000 steps
I1031 07:15:01.245083 139885496419712 controller.py:32] step: 28000        steps_per_second: 0.62        {'total_loss': 1.5182695, 'cls_loss': 0.60736024, 'box_loss': 0.005538965, 'model_loss': 0.8843092, 'training_loss': 1.5182695, 'learning_rate': 0.0175}
I1031 07:15:01.255714 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 28000
I1031 07:45:01.585833 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 07:47:28.053360 139885496419712 controller.py:32] step: 28000        evaluation metric: {'total_loss': 1.5189503, 'cls_loss': 0.62144244, 'box_loss': 0.0056359097, 'model_loss': 0.9032378, 'validation_loss': 1.5189503, 'AP': 0.12010572, 'AP50': 0.20608844, 'AP75': 0.1223577, 'APs': 0.028878134, 'APm': 0.095463865, 'APl': 0.18948387, 'ARmax1': 0.18265218, 'ARmax10': 0.29688853, 'ARmax100': 0.30938557, 'ARs': 0.076697454, 'ARm': 0.2944731, 'ARl': 0.45407113}

 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.167
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.092
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.017
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.081
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.141
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.157
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.257
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.270
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.051
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.250
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.403
step: 20000        evaluation metric: {'total_loss': 1.7365601, 'cls_loss': 0.6543167, 'box_loss': 0.0060396246, 'model_loss': 0.9562982, 'validation_loss': 1.7365601, 'AP': 0.09287657, 'AP50': 0.16696998, 'AP75': 0.091831, 'APs': 0.016764913, 'APm': 0.08103716, 'APl': 0.14146243, 'ARmax1': 0.15737882, 'ARmax10': 0.25748417, 'ARmax100': 0.27028137, 'ARs': 0.050834853, 'ARm': 0.250391, 'ARl': 0.4025708}
step: 22000        steps_per_second: 0.62        {'total_loss': 1.6866505, 'cls_loss': 0.6370228, 'box_loss': 0.00584322, 'model_loss': 0.9291848, 'training_loss': 1.6866505, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=95.87s).
Accumulating evaluation results...
DONE (t=13.83s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.098
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.177
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.097
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.024
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.086
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.147
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.163
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.264
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.276
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.071
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.269
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.386
step: 22000        evaluation metric: {'total_loss': 1.689145, 'cls_loss': 0.6559819, 'box_loss': 0.0059656464, 'model_loss': 0.95426446, 'validation_loss': 1.689145, 'AP': 0.097518176, 'AP50': 0.17676663, 'AP75': 0.09696455, 'APs': 0.024464171, 'APm': 0.08607653, 'APl': 0.14655727, 'ARmax1': 0.16281688, 'ARmax10': 0.2641258, 'ARmax100': 0.27565268, 'ARs': 0.070531555, 'ARm': 0.26941356, 'ARl': 0.3862451}
step: 24000        steps_per_second: 0.62        {'total_loss': 1.617964, 'cls_loss': 0.6204008, 'box_loss': 0.00568443, 'model_loss': 0.90462315, 'training_loss': 1.617964, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=100.82s).
Accumulating evaluation results...
DONE (t=13.87s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.117
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.204
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.118
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.025
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.093
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.186
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.175
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.286
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.301
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.073
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.289
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.436
step: 24000        evaluation metric: {'total_loss': 1.6017793, 'cls_loss': 0.6207918, 'box_loss': 0.005774223, 'model_loss': 0.9095029, 'validation_loss': 1.6017793, 'AP': 0.1170256, 'AP50': 0.20438606, 'AP75': 0.11793307, 'APs': 0.024898289, 'APm': 0.09308181, 'APl': 0.1858881, 'ARmax1': 0.17547216, 'ARmax10': 0.286284, 'ARmax100': 0.30100176, 'ARs': 0.072808474, 'ARm': 0.28913948, 'ARl': 0.43568316}
step: 26000        steps_per_second: 0.62        {'total_loss': 1.5680726, 'cls_loss': 0.6153645, 'box_loss': 0.0056095384, 'model_loss': 0.8958406, 'training_loss': 1.5680726, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=99.39s).
Accumulating evaluation results...
DONE (t=14.22s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.109
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.192
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.109
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.019
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.093
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.165
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.171
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.276
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.289
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.068
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.281
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.409
step: 26000        evaluation metric: {'total_loss': 1.5675296, 'cls_loss': 0.62697786, 'box_loss': 0.0057582282, 'model_loss': 0.91488904, 'validation_loss': 1.5675296, 'AP': 0.1090435, 'AP50': 0.19172487, 'AP75': 0.10934281, 'APs': 0.019161979, 'APm': 0.093128696, 'APl': 0.16513485, 'ARmax1': 0.1705256, 'ARmax10': 0.27630976, 'ARmax100': 0.2891266, 'ARs': 0.06790081, 'ARm': 0.2806543, 'ARl': 0.40896055}
step: 28000        steps_per_second: 0.62        {'total_loss': 1.5182695, 'cls_loss': 0.60736024, 'box_loss': 0.005538965, 'model_loss': 0.8843092, 'training_loss': 1.5182695, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=102.35s).
Accumulating evaluation results...
DONE (t=14.55s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.120
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.206
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.122
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.029
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.095
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.189
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.183
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.297
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.309
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.077
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.294
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.454
step: 28000        evaluation metric: {'total_loss': 1.5189503, 'cls_loss': 0.62144244, 'box_loss': 0.0056359097, 'model_loss': 0.9032378, 'validation_loss': 1.5189503, 'AP': 0.12010572, 'AP50': 0.20608844, 'AP75': 0.1223577, 'APs': 0.028878134, 'APm': 0.095463865, 'APl': 0.18948387, 'ARmax1': 0.18265218, 'ARmax10': 0.29688853, 'ARmax100': 0.30938557, 'ARs': 0.076697454, 'ARm': 0.2944731, 'ARl': 0.45407113}I1031 07:47:28.088339 139885496419712 controller.py:167] Train at step 28000 of 30000
I1031 07:47:28.088917 139885496419712 controller.py:334] Entering training loop at step 28000 to run 2000 steps
I1031 08:09:02.155096 139885496419712 controller.py:32] step: 30000        steps_per_second: 0.62        {'total_loss': 1.4702015, 'cls_loss': 0.5977997, 'box_loss': 0.005480808, 'model_loss': 0.87184054, 'training_loss': 1.4702015, 'learning_rate': 0.0175}
I1031 08:09:02.165273 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 30000
I1031 08:39:00.798716 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 08:41:16.337606 139885496419712 controller.py:32] step: 30000        evaluation metric: {'total_loss': 1.4634776, 'cls_loss': 0.60642874, 'box_loss': 0.005513028, 'model_loss': 0.88208026, 'validation_loss': 1.4634776, 'AP': 0.12509336, 'AP50': 0.21519625, 'AP75': 0.12908259, 'APs': 0.024677623, 'APm': 0.10667812, 'APl': 0.19518888, 'ARmax1': 0.1834508, 'ARmax10': 0.29639313, 'ARmax100': 0.3098349, 'ARs': 0.074831896, 'ARm': 0.29660422, 'ARl': 0.4517507}
I1031 08:41:16.367896 139885496419712 controller.py:167] Train at step 30000 of 32000
I1031 08:41:16.368516 139885496419712 controller.py:334] Entering training loop at step 30000 to run 2000 steps
I1031 09:02:50.250838 139885496419712 controller.py:32] step: 32000        steps_per_second: 0.62        {'total_loss': 1.4236084, 'cls_loss': 0.5891118, 'box_loss': 0.005384081, 'model_loss': 0.8583154, 'training_loss': 1.4236084, 'learning_rate': 0.0175}
I1031 09:02:50.261479 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 32000
I1031 09:32:52.535594 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 09:35:15.225395 139885496419712 controller.py:32] step: 32000        evaluation metric: {'total_loss': 1.4254229, 'cls_loss': 0.6034627, 'box_loss': 0.005448834, 'model_loss': 0.8759045, 'validation_loss': 1.4254229, 'AP': 0.12228533, 'AP50': 0.21047877, 'AP75': 0.12515314, 'APs': 0.021129027, 'APm': 0.106184624, 'APl': 0.18722458, 'ARmax1': 0.18199767, 'ARmax10': 0.29837707, 'ARmax100': 0.31369108, 'ARs': 0.0720723, 'ARm': 0.29641658, 'ARl': 0.46136618}
I1031 09:35:15.259743 139885496419712 controller.py:167] Train at step 32000 of 34000
I1031 09:35:15.260261 139885496419712 controller.py:334] Entering training loop at step 32000 to run 2000 steps
I1031 09:56:49.535590 139885496419712 controller.py:32] step: 34000        steps_per_second: 0.62        {'total_loss': 1.3879714, 'cls_loss': 0.5854915, 'box_loss': 0.0053599207, 'model_loss': 0.8534866, 'training_loss': 1.3879714, 'learning_rate': 0.0175}
I1031 09:56:50.356324 139885496419712 controller.py:381] Saved checkpoints in training_dir/ckpt-34000
I1031 09:56:50.357955 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 34000
I1031 10:26:50.954882 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 10:29:03.090598 139885496419712 controller.py:32] step: 34000        evaluation metric: {'total_loss': 1.4026945, 'cls_loss': 0.6071424, 'box_loss': 0.0055147246, 'model_loss': 0.8828786, 'validation_loss': 1.4026945, 'AP': 0.12370313, 'AP50': 0.21386495, 'AP75': 0.1273946, 'APs': 0.023783108, 'APm': 0.103701055, 'APl': 0.19189158, 'ARmax1': 0.18421498, 'ARmax10': 0.2939707, 'ARmax100': 0.30837682, 'ARs': 0.075453445, 'ARm': 0.28140718, 'ARl': 0.4575001}
I1031 10:29:03.115907 139885496419712 controller.py:167] Train at step 34000 of 36000
I1031 10:29:03.116474 139885496419712 controller.py:334] Entering training loop at step 34000 to run 2000 steps
I1031 10:50:37.206810 139885496419712 controller.py:32] step: 36000        steps_per_second: 0.62        {'total_loss': 1.3549321, 'cls_loss': 0.58248144, 'box_loss': 0.005332086, 'model_loss': 0.8490854, 'training_loss': 1.3549321, 'learning_rate': 0.0175}
I1031 10:50:37.217392 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 36000
I1031 11:20:39.467981 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 11:22:56.289299 139885496419712 controller.py:32] step: 36000        evaluation metric: {'total_loss': 1.3784864, 'cls_loss': 0.60839164, 'box_loss': 0.0055575483, 'model_loss': 0.8862693, 'validation_loss': 1.3784864, 'AP': 0.12903413, 'AP50': 0.22434664, 'AP75': 0.13116604, 'APs': 0.025630709, 'APm': 0.111586586, 'APl': 0.20179033, 'ARmax1': 0.18421678, 'ARmax10': 0.29527283, 'ARmax100': 0.3096738, 'ARs': 0.07373256, 'ARm': 0.2999831, 'ARl': 0.44662184}
I1031 11:22:56.318710 139885496419712 controller.py:167] Train at step 36000 of 38000
I1031 11:22:56.319190 139885496419712 controller.py:334] Entering training loop at step 36000 to run 2000 steps
I1031 11:44:30.339666 139885496419712 controller.py:32] step: 38000        steps_per_second: 0.62        {'total_loss': 1.3185784, 'cls_loss': 0.57590026, 'box_loss': 0.0052685854, 'model_loss': 0.8393302, 'training_loss': 1.3185784, 'learning_rate': 0.0175}
I1031 11:44:30.350597 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 38000
I1031 12:14:31.522972 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.

step: 30000        steps_per_second: 0.62        {'total_loss': 1.4702015, 'cls_loss': 0.5977997, 'box_loss': 0.005480808, 'model_loss': 0.87184054, 'training_loss': 1.4702015, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=94.71s).
Accumulating evaluation results...
DONE (t=13.82s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.125
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.215
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.129
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.025
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.107
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.195
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.183
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.296
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.310
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.075
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.297
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.452
step: 30000        evaluation metric: {'total_loss': 1.4634776, 'cls_loss': 0.60642874, 'box_loss': 0.005513028, 'model_loss': 0.88208026, 'validation_loss': 1.4634776, 'AP': 0.12509336, 'AP50': 0.21519625, 'AP75': 0.12908259, 'APs': 0.024677623, 'APm': 0.10667812, 'APl': 0.19518888, 'ARmax1': 0.1834508, 'ARmax10': 0.29639313, 'ARmax100': 0.3098349, 'ARs': 0.074831896, 'ARm': 0.29660422, 'ARl': 0.4517507}
step: 32000        steps_per_second: 0.62        {'total_loss': 1.4236084, 'cls_loss': 0.5891118, 'box_loss': 0.005384081, 'model_loss': 0.8583154, 'training_loss': 1.4236084, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=99.15s).
Accumulating evaluation results...
DONE (t=17.32s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.122
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.210
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.125
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.021
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.106
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.187
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.182
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.298
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.314
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.072
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.296
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.461
step: 32000        evaluation metric: {'total_loss': 1.4254229, 'cls_loss': 0.6034627, 'box_loss': 0.005448834, 'model_loss': 0.8759045, 'validation_loss': 1.4254229, 'AP': 0.12228533, 'AP50': 0.21047877, 'AP75': 0.12515314, 'APs': 0.021129027, 'APm': 0.106184624, 'APl': 0.18722458, 'ARmax1': 0.18199767, 'ARmax10': 0.29837707, 'ARmax100': 0.31369108, 'ARs': 0.0720723, 'ARm': 0.29641658, 'ARl': 0.46136618}
step: 34000        steps_per_second: 0.62        {'total_loss': 1.3879714, 'cls_loss': 0.5854915, 'box_loss': 0.0053599207, 'model_loss': 0.8534866, 'training_loss': 1.3879714, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=91.78s).
Accumulating evaluation results...
DONE (t=13.64s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.124
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.214
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.127
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.024
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.104
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.192
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.184
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.294
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.308
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.075
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.281
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.458
step: 34000        evaluation metric: {'total_loss': 1.4026945, 'cls_loss': 0.6071424, 'box_loss': 0.0055147246, 'model_loss': 0.8828786, 'validation_loss': 1.4026945, 'AP': 0.12370313, 'AP50': 0.21386495, 'AP75': 0.1273946, 'APs': 0.023783108, 'APm': 0.103701055, 'APl': 0.19189158, 'ARmax1': 0.18421498, 'ARmax10': 0.2939707, 'ARmax100': 0.30837682, 'ARs': 0.075453445, 'ARm': 0.28140718, 'ARl': 0.4575001}
step: 36000        steps_per_second: 0.62        {'total_loss': 1.3549321, 'cls_loss': 0.58248144, 'box_loss': 0.005332086, 'model_loss': 0.8490854, 'training_loss': 1.3549321, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=96.87s).
Accumulating evaluation results...
DONE (t=13.45s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.129
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.224
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.131
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.026
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.112
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.202
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.184
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.295
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.310
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.074
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.300
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.447
step: 36000        evaluation metric: {'total_loss': 1.3784864, 'cls_loss': 0.60839164, 'box_loss': 0.0055575483, 'model_loss': 0.8862693, 'validation_loss': 1.3784864, 'AP': 0.12903413, 'AP50': 0.22434664, 'AP75': 0.13116604, 'APs': 0.025630709, 'APm': 0.111586586, 'APl': 0.20179033, 'ARmax1': 0.18421678, 'ARmax10': 0.29527283, 'ARmax100': 0.3096738, 'ARs': 0.07373256, 'ARm': 0.2999831, 'ARl': 0.44662184}
step: 38000        steps_per_second: 0.62        {'total_loss': 1.3185784, 'cls_loss': 0.57590026, 'box_loss': 0.0052685854, 'model_loss': 0.8393302, 'training_loss': 1.3185784, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=88.68s).
Accumulating evaluation results...
DONE (t=13.35s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.129
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.225
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.132
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.028
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.114
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.196
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.184
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.298
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.313I1031 12:16:40.926157 139885496419712 controller.py:32] step: 38000        evaluation metric: {'total_loss': 1.3514221, 'cls_loss': 0.61072814, 'box_loss': 0.00548145, 'model_loss': 0.8848008, 'validation_loss': 1.3514221, 'AP': 0.12941317, 'AP50': 0.22522616, 'AP75': 0.13184388, 'APs': 0.028182765, 'APm': 0.1135972, 'APl': 0.19637726, 'ARmax1': 0.18401565, 'ARmax10': 0.29843047, 'ARmax100': 0.31292313, 'ARs': 0.08129782, 'ARm': 0.3145205, 'ARl': 0.44674942}
I1031 12:16:40.960808 139885496419712 controller.py:167] Train at step 38000 of 40000
I1031 12:16:40.961389 139885496419712 controller.py:334] Entering training loop at step 38000 to run 2000 steps
I1031 12:38:15.597293 139885496419712 controller.py:32] step: 40000        steps_per_second: 0.62        {'total_loss': 1.2835882, 'cls_loss': 0.56903994, 'box_loss': 0.005200124, 'model_loss': 0.82904565, 'training_loss': 1.2835882, 'learning_rate': 0.0175}
I1031 12:38:15.607194 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 40000
I1031 13:08:15.942293 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 13:10:33.274583 139885496419712 controller.py:32] step: 40000        evaluation metric: {'total_loss': 1.2893002, 'cls_loss': 0.5780909, 'box_loss': 0.0053695966, 'model_loss': 0.8465711, 'validation_loss': 1.2893002, 'AP': 0.1392194, 'AP50': 0.24242955, 'AP75': 0.14185813, 'APs': 0.03170243, 'APm': 0.11697013, 'APl': 0.21997045, 'ARmax1': 0.19765268, 'ARmax10': 0.3194477, 'ARmax100': 0.3355437, 'ARs': 0.09075803, 'ARm': 0.3163557, 'ARl': 0.4858842}
I1031 13:10:33.310683 139885496419712 controller.py:167] Train at step 40000 of 42000
I1031 13:10:33.311316 139885496419712 controller.py:334] Entering training loop at step 40000 to run 2000 steps
I1031 13:32:07.838726 139885496419712 controller.py:32] step: 42000        steps_per_second: 0.62        {'total_loss': 1.2697237, 'cls_loss': 0.57452255, 'box_loss': 0.0052705845, 'model_loss': 0.8380518, 'training_loss': 1.2697237, 'learning_rate': 0.0175}
I1031 13:32:08.668227 139885496419712 controller.py:381] Saved checkpoints in training_dir/ckpt-42000
I1031 13:32:08.669720 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 42000
I1031 14:02:11.143864 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 14:04:29.832409 139885496419712 controller.py:32] step: 42000        evaluation metric: {'total_loss': 1.5447754, 'cls_loss': 0.785464, 'box_loss': 0.006719882, 'model_loss': 1.121458, 'validation_loss': 1.5447754, 'AP': 0.062637836, 'AP50': 0.11126457, 'AP75': 0.06359231, 'APs': 0.011471858, 'APm': 0.05856425, 'APl': 0.09969066, 'ARmax1': 0.12162978, 'ARmax10': 0.19260113, 'ARmax100': 0.19863887, 'ARs': 0.027858548, 'ARm': 0.17577986, 'ARl': 0.3217958}
I1031 14:04:29.866588 139885496419712 controller.py:167] Train at step 42000 of 44000
I1031 14:04:29.867208 139885496419712 controller.py:334] Entering training loop at step 42000 to run 2000 steps
I1031 14:26:03.703194 139885496419712 controller.py:32] step: 44000        steps_per_second: 0.62        {'total_loss': 1.2505301, 'cls_loss': 0.5742789, 'box_loss': 0.0052680196, 'model_loss': 0.83768034, 'training_loss': 1.2505301, 'learning_rate': 0.0175}
I1031 14:26:03.713587 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 44000
I1031 14:56:02.766963 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 14:58:16.430249 139885496419712 controller.py:32] step: 44000        evaluation metric: {'total_loss': 1.3667822, 'cls_loss': 0.6602397, 'box_loss': 0.006074844, 'model_loss': 0.9639824, 'validation_loss': 1.3667822, 'AP': 0.09594054, 'AP50': 0.17444487, 'AP75': 0.094005845, 'APs': 0.021597486, 'APm': 0.093030944, 'APl': 0.14369863, 'ARmax1': 0.15980989, 'ARmax10': 0.26280856, 'ARmax100': 0.27431372, 'ARs': 0.059566103, 'ARm': 0.2790743, 'ARl': 0.38445896}
I1031 14:58:16.463191 139885496419712 controller.py:167] Train at step 44000 of 46000
I1031 14:58:16.463725 139885496419712 controller.py:334] Entering training loop at step 44000 to run 2000 steps
I1031 15:19:51.490733 139885496419712 controller.py:32] step: 46000        steps_per_second: 0.62        {'total_loss': 1.2127715, 'cls_loss': 0.56231374, 'box_loss': 0.0051487056, 'model_loss': 0.81974953, 'training_loss': 1.2127715, 'learning_rate': 0.0175}
I1031 15:19:51.501270 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 46000
I1031 15:49:52.190389 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 15:52:00.247564 139885496419712 controller.py:32] step: 46000        evaluation metric: {'total_loss': 1.220416, 'cls_loss': 0.57451785, 'box_loss': 0.005251268, 'model_loss': 0.83708125, 'validation_loss': 1.220416, 'AP': 0.14968255, 'AP50': 0.2530588, 'AP75': 0.15353745, 'APs': 0.033541586, 'APm': 0.13266043, 'APl': 0.22829902, 'ARmax1': 0.19840653, 'ARmax10': 0.31818593, 'ARmax100': 0.3341818, 'ARs': 0.08637451, 'ARm': 0.31760666, 'ARl': 0.49106246}
I1031 15:52:00.282764 139885496419712 controller.py:167] Train at step 46000 of 48000
I1031 15:52:00.283312 139885496419712 controller.py:334] Entering training loop at step 46000 to run 2000 steps
I1031 16:13:34.921621 139885496419712 controller.py:32] step: 48000        steps_per_second: 0.62        {'total_loss': 1.1860626, 'cls_loss': 0.557108, 'box_loss': 0.0050959033, 'model_loss': 0.8119028, 'training_loss': 1.1860626, 'learning_rate': 0.0175}
I1031 16:13:34.932175 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 48000
I1031 16:43:35.332994 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.

 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.081
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.315
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.447
step: 38000        evaluation metric: {'total_loss': 1.3514221, 'cls_loss': 0.61072814, 'box_loss': 0.00548145, 'model_loss': 0.8848008, 'validation_loss': 1.3514221, 'AP': 0.12941317, 'AP50': 0.22522616, 'AP75': 0.13184388, 'APs': 0.028182765, 'APm': 0.1135972, 'APl': 0.19637726, 'ARmax1': 0.18401565, 'ARmax10': 0.29843047, 'ARmax100': 0.31292313, 'ARs': 0.08129782, 'ARm': 0.3145205, 'ARl': 0.44674942}
step: 40000        steps_per_second: 0.62        {'total_loss': 1.2835882, 'cls_loss': 0.56903994, 'box_loss': 0.005200124, 'model_loss': 0.82904565, 'training_loss': 1.2835882, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=96.40s).
Accumulating evaluation results...
DONE (t=13.63s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.139
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.242
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.142
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.032
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.117
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.220
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.198
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.319
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.336
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.091
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.316
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.486
step: 40000        evaluation metric: {'total_loss': 1.2893002, 'cls_loss': 0.5780909, 'box_loss': 0.0053695966, 'model_loss': 0.8465711, 'validation_loss': 1.2893002, 'AP': 0.1392194, 'AP50': 0.24242955, 'AP75': 0.14185813, 'APs': 0.03170243, 'APm': 0.11697013, 'APl': 0.21997045, 'ARmax1': 0.19765268, 'ARmax10': 0.3194477, 'ARmax100': 0.3355437, 'ARs': 0.09075803, 'ARm': 0.3163557, 'ARl': 0.4858842}
step: 42000        steps_per_second: 0.62        {'total_loss': 1.2697237, 'cls_loss': 0.57452255, 'box_loss': 0.0052705845, 'model_loss': 0.8380518, 'training_loss': 1.2697237, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=96.45s).
Accumulating evaluation results...
DONE (t=14.10s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.063
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.111
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.064
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.011
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.059
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.100
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.122
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.193
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.199
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.028
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.176
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.322
step: 42000        evaluation metric: {'total_loss': 1.5447754, 'cls_loss': 0.785464, 'box_loss': 0.006719882, 'model_loss': 1.121458, 'validation_loss': 1.5447754, 'AP': 0.062637836, 'AP50': 0.11126457, 'AP75': 0.06359231, 'APs': 0.011471858, 'APm': 0.05856425, 'APl': 0.09969066, 'ARmax1': 0.12162978, 'ARmax10': 0.19260113, 'ARmax100': 0.19863887, 'ARs': 0.027858548, 'ARm': 0.17577986, 'ARl': 0.3217958}
step: 44000        steps_per_second: 0.62        {'total_loss': 1.2505301, 'cls_loss': 0.5742789, 'box_loss': 0.0052680196, 'model_loss': 0.83768034, 'training_loss': 1.2505301, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=93.86s).
Accumulating evaluation results...
DONE (t=13.11s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.096
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.174
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.094
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.022
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.093
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.144
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.160
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.263
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.274
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.060
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.279
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.384
step: 44000        evaluation metric: {'total_loss': 1.3667822, 'cls_loss': 0.6602397, 'box_loss': 0.006074844, 'model_loss': 0.9639824, 'validation_loss': 1.3667822, 'AP': 0.09594054, 'AP50': 0.17444487, 'AP75': 0.094005845, 'APs': 0.021597486, 'APm': 0.093030944, 'APl': 0.14369863, 'ARmax1': 0.15980989, 'ARmax10': 0.26280856, 'ARmax100': 0.27431372, 'ARs': 0.059566103, 'ARm': 0.2790743, 'ARl': 0.38445896}
step: 46000        steps_per_second: 0.62        {'total_loss': 1.2127715, 'cls_loss': 0.56231374, 'box_loss': 0.0051487056, 'model_loss': 0.81974953, 'training_loss': 1.2127715, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=89.58s).
Accumulating evaluation results...
DONE (t=12.69s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.150
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.253
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.154
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.034
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.133
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.228
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.198
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.318
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.334
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.086
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.318
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.491
step: 46000        evaluation metric: {'total_loss': 1.220416, 'cls_loss': 0.57451785, 'box_loss': 0.005251268, 'model_loss': 0.83708125, 'validation_loss': 1.220416, 'AP': 0.14968255, 'AP50': 0.2530588, 'AP75': 0.15353745, 'APs': 0.033541586, 'APm': 0.13266043, 'APl': 0.22829902, 'ARmax1': 0.19840653, 'ARmax10': 0.31818593, 'ARmax100': 0.3341818, 'ARs': 0.08637451, 'ARm': 0.31760666, 'ARl': 0.49106246}
step: 48000        steps_per_second: 0.62        {'total_loss': 1.1860626, 'cls_loss': 0.557108, 'box_loss': 0.0050959033, 'model_loss': 0.8119028, 'training_loss': 1.1860626, 'learning_rate': 0.0175}
creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=94.08s).
Accumulating evaluation results...
DONE (t=13.05s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.156I1031 16:45:49.831901 139885496419712 controller.py:32] step: 48000        evaluation metric: {'total_loss': 1.190438, 'cls_loss': 0.5644366, 'box_loss': 0.0052165976, 'model_loss': 0.8252664, 'validation_loss': 1.190438, 'AP': 0.15589666, 'AP50': 0.2666446, 'AP75': 0.1579226, 'APs': 0.032910142, 'APm': 0.13874066, 'APl': 0.22911705, 'ARmax1': 0.20407797, 'ARmax10': 0.32992476, 'ARmax100': 0.34607226, 'ARs': 0.10615714, 'ARm': 0.3494303, 'ARl': 0.48322043}
I1031 16:45:49.869277 139885496419712 controller.py:167] Train at step 48000 of 50000
I1031 16:45:49.869823 139885496419712 controller.py:334] Entering training loop at step 48000 to run 2000 steps
I1031 17:07:24.221114 139885496419712 controller.py:32] step: 50000        steps_per_second: 0.62        {'total_loss': 1.1622236, 'cls_loss': 0.55269384, 'box_loss': 0.005057054, 'model_loss': 0.8055469, 'training_loss': 1.1622236, 'learning_rate': 0.0175}
I1031 17:07:25.054098 139885496419712 controller.py:381] Saved checkpoints in training_dir/ckpt-50000
I1031 17:07:25.055474 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 50000
I1031 17:37:31.005617 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 17:39:58.140462 139885496419712 controller.py:32] step: 50000        evaluation metric: {'total_loss': 1.182763, 'cls_loss': 0.5719879, 'box_loss': 0.0052478183, 'model_loss': 0.83437854, 'validation_loss': 1.182763, 'AP': 0.15345125, 'AP50': 0.25885797, 'AP75': 0.1577261, 'APs': 0.03554234, 'APm': 0.1326204, 'APl': 0.23334704, 'ARmax1': 0.20183603, 'ARmax10': 0.3270075, 'ARmax100': 0.34437168, 'ARs': 0.10711023, 'ARm': 0.34062216, 'ARl': 0.49045214}
I1031 17:39:58.175596 139885496419712 controller.py:167] Train at step 50000 of 52000
I1031 17:39:58.176388 139885496419712 controller.py:334] Entering training loop at step 50000 to run 2000 steps
I1031 18:02:00.363424 139885496419712 controller.py:32] step: 52000        steps_per_second: 0.61        {'total_loss': 1.1411799, 'cls_loss': 0.5503363, 'box_loss': 0.0050072405, 'model_loss': 0.8006991, 'training_loss': 1.1411799, 'learning_rate': 0.0175}
I1031 18:02:00.402074 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 52000
I1031 18:32:04.887839 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 18:34:26.981041 139885496419712 controller.py:32] step: 52000        evaluation metric: {'total_loss': 1.1437737, 'cls_loss': 0.5545166, 'box_loss': 0.0051303557, 'model_loss': 0.8110344, 'validation_loss': 1.1437737, 'AP': 0.16220997, 'AP50': 0.2706167, 'AP75': 0.16882622, 'APs': 0.03653328, 'APm': 0.13979578, 'APl': 0.24624981, 'ARmax1': 0.20707768, 'ARmax10': 0.33736664, 'ARmax100': 0.35503754, 'ARs': 0.09993061, 'ARm': 0.35223114, 'ARl': 0.5025141}
I1031 18:34:27.030765 139885496419712 controller.py:167] Train at step 52000 of 54000
I1031 18:34:27.031316 139885496419712 controller.py:334] Entering training loop at step 52000 to run 2000 steps
I1031 18:56:05.414261 139885496419712 controller.py:32] step: 54000        steps_per_second: 0.62        {'total_loss': 1.1175134, 'cls_loss': 0.5445361, 'box_loss': 0.00495084, 'model_loss': 0.79207766, 'training_loss': 1.1175134, 'learning_rate': 0.0175}
I1031 18:56:05.438895 139885496419712 controller.py:201] Running 1564 steps of evaluation at train step: 54000
I1031 19:26:06.722558 139885496419712 coco_evaluator.py:128] There is no annotation_file in COCOEvaluator.
I1031 19:28:20.350446 139885496419712 controller.py:32] step: 54000        evaluation metric: {'total_loss': 1.1411448, 'cls_loss': 0.566344, 'box_loss': 0.005129792, 'model_loss': 0.8228335, 'validation_loss': 1.1411448, 'AP': 0.15545042, 'AP50': 0.2636171, 'AP75': 0.15803272, 'APs': 0.028823914, 'APm': 0.13085106, 'APl': 0.23903799, 'ARmax1': 0.20254348, 'ARmax10': 0.32471123, 'ARmax100': 0.34092107, 'ARs': 0.088891774, 'ARm': 0.32869858, 'ARl': 0.49599567}
I1031 19:28:20.382083 139885496419712 controller.py:167] Train at step 54000 of 56000
I1031 19:28:20.382549 139885496419712 controller.py:334] Entering training loop at step 54000 to run 2000 steps