"git@developer.sourcefind.cn:hehl2/torchaudio.git" did not exist on "076052f12eef6c2c64be85ca9c89054167cc1f24"
Commit f1e8e671 authored by Vishnu Banna's avatar Vishnu Banna
Browse files

rm change to orbit in final, testing backbone training

parent eeb371d4
This diff is collapsed.
runtime:
distribution_strategy: 'mirrored'
mixed_precision_dtype: 'float16'
loss_scale: 'dynamic'
num_gpus: 2
task:
annotation_file: Null
init_checkpoint: Null
model:
num_classes: 80
input_size: [640, 640, 3]
min_level: 3
max_level: 7
losses:
l2_weight_decay: 0.0001
train_data:
input_path: Null
tfds_name: 'coco/2017'
tfds_split: 'train'
tfds_download: True
is_training: True
global_batch_size: 16
dtype: 'float16'
cycle_length: 5
decoder:
type: tfds_decoder
shuffle_buffer_size: 2
validation_data:
input_path: Null
tfds_name: 'coco/2017'
tfds_split: 'validation'
tfds_download: True
# tfds_skip_decoding_feature: source_id,image,height,width,groundtruth_classes,groundtruth_is_crowd,groundtruth_area,groundtruth_boxes
is_training: False
global_batch_size: 16
dtype: 'float16'
cycle_length: 10
decoder:
type: tfds_decoder
shuffle_buffer_size: 2
trainer:
train_steps: 532224
validation_steps: 1564
validation_interval: 2000
steps_per_loop: 200 #59136
summary_interval: 200 #59136
checkpoint_interval: 10000
optimizer_config:
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
# learning_rate:
# type: 'cosine'
# cosine:
# initial_learning_rate: 0.0021875
# decay_steps: 4257792
# alpha: 0.01
# Stepwise version
learning_rate:
type: 'stepwise'
stepwise:
# boundaries: [26334, 30954]
boundaries: [421344, 495264]
# values: [0.28, 0.028, 0.0028]
values: [0.0175, 0.00175, 0.000175]
warmup:
type: 'linear'
linear:
warmup_steps: 20480
warmup_learning_rate: 0.0001634375
This diff is collapsed.
......@@ -16,14 +16,16 @@ task:
train_data:
tfds_name: 'imagenet2012'
tfds_split: 'train'
tfds_data_dir: '~/tensorflow_datasets'
tfds_data_dir: '~/tensorflow_datasets/'
tfds_download: true
is_training: true
global_batch_size: 128
dtype: 'float16'
validation_data:
tfds_name: 'imagenet2012'
tfds_split: 'validation'
tfds_data_dir: '~/tensorflow_datasets'
tfds_data_dir: '~/tensorflow_datasets/'
tfds_download: true
is_training: true
global_batch_size: 128
dtype: 'float16'
......
......@@ -15,14 +15,16 @@ task:
train_data:
tfds_name: 'imagenet2012'
tfds_split: 'train'
tfds_data_dir: '~/tensorflow_datasets'
tfds_data_dir: '~/tensorflow_datasets/'
tfds_download: true
is_training: true
global_batch_size: 128
dtype: 'float16'
validation_data:
tfds_name: 'imagenet2012'
tfds_split: 'validation'
tfds_data_dir: '~/tensorflow_datasets'
tfds_data_dir: '~/tensorflow_datasets/'
tfds_download: true
is_training: true
global_batch_size: 128
dtype: 'float16'
......
......@@ -35,6 +35,8 @@ FLAGS = flags.FLAGS
def main(_):
gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params)
params = train_utils.parse_configuration(FLAGS)
import pprint
pprint.pprint(params.as_dict())
model_dir = FLAGS.model_dir
if 'train' in FLAGS.mode:
# Pure eval modes do not output yaml files. Otherwise continuous eval job
......
......@@ -81,8 +81,9 @@ def make_distributed_dataset(strategy, dataset_or_fn, *args, **kwargs):
if "input_context" in arg_names:
kwargs["input_context"] = input_context
return dataset_or_fn(*args, **kwargs)
return strategy.distribute_datasets_from_function(dataset_fn)
return strategy.experimental_distribute_datasets_from_function(dataset_fn)
#return strategy.distribute_datasets_from_function(dataset_fn)
def get_value(x):
......
runtime:
distribution_strategy: 'mirrored'
mixed_precision_dtype: 'float32'
loss_scale: 'dynamic'
num_gpus: 1
task:
init_checkpoint: Null
model:
num_classes: 80
input_size: [640, 640, 3]
min_level: 3
max_level: 7
losses:
l2_weight_decay: 0.0001
train_data:
input_path: Null
tfds_name: 'coco/2017'
tfds_split: 'train'
tfds_download: True
is_training: True
global_batch_size: 2
dtype: 'float16'
cycle_length: 5
decoder:
type: tfds_decoder
shuffle_buffer_size: 2
validation_data:
input_path: Null
tfds_name: 'coco/2017'
tfds_split: 'validation'
tfds_download: True
# tfds_skip_decoding_feature: source_id,image,height,width,groundtruth_classes,groundtruth_is_crowd,groundtruth_area,groundtruth_boxes
is_training: False
global_batch_size: 2
dtype: 'float16'
cycle_length: 10
decoder:
type: tfds_decoder
shuffle_buffer_size: 2
trainer:
train_steps: 4257792
validation_steps: 2500
validation_interval: 5000
steps_per_loop: 100 #59136
summary_interval: 100 #59136
checkpoint_interval: 59136
optimizer_config:
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
# learning_rate:
# type: 'cosine'
# cosine:
# initial_learning_rate: 0.0021875
# decay_steps: 4257792
# alpha: 0.01
# Stepwise version
learning_rate:
type: 'stepwise'
stepwise:
# boundaries: [26334, 30954]
boundaries: [3370752, 3962112]
# values: [0.28, 0.028, 0.0028]
values: [0.0021875, 0.00021875, 0.000021875]
warmup:
type: 'linear'
linear:
warmup_steps: 64000
warmup_learning_rate: 0.0000523
import tensorflow_datasets as tfds
import tensorflow as tf
from official.vision.beta.dataloaders import decoder
import matplotlib.pyplot as plt
import cv2
class TfdsExampleDecoder(decoder.Decoder):
"""Tensorflow Dataset Example proto decoder."""
def __init__(self,
include_mask=False,
regenerate_source_id=False):
self._include_mask = include_mask
self._regenerate_source_id = regenerate_source_id
def decode(self, serialized_example):
"""Decode the serialized example.
Args:
serialized_example: a single serialized tf.Example string.
Returns:
decoded_tensors: a dictionary of tensors with the following fields:
- source_id: a string scalar tensor.
- image: a uint8 tensor of shape [None, None, 3].
- height: an integer scalar tensor.
- width: an integer scalar tensor.
- groundtruth_classes: a int64 tensor of shape [None].
- groundtruth_is_crowd: a bool tensor of shape [None].
- groundtruth_area: a float32 tensor of shape [None].
- groundtruth_boxes: a float32 tensor of shape [None, 4].
- groundtruth_instance_masks: a float32 tensor of shape
[None, None, None].
- groundtruth_instance_masks_png: a string tensor of shape [None].
"""
decoded_tensors = {
'source_id': serialized_example['image/id'],
'image': serialized_example['image'],
'height': tf.shape(serialized_example['image'])[0],
'width': tf.shape(serialized_example['image'])[1],
'groundtruth_classes': serialized_example['objects']['label'],
'groundtruth_is_crowd': serialized_example['objects']['is_crowd'],
'groundtruth_area': serialized_example['objects']['area'],
'groundtruth_boxes': serialized_example['objects']['bbox'],
}
return decoded_tensors
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment