bert_models.py 18.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT models that are compatible with TF 2.0."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import tensorflow as tf
23
import tensorflow_hub as hub
24

25
26
from official.modeling import tf_utils
from official.nlp import bert_modeling as modeling
Hongkun Yu's avatar
Hongkun Yu committed
27
28
from official.nlp.modeling import networks
from official.nlp.modeling.networks import bert_classifier
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


def gather_indexes(sequence_tensor, positions):
  """Gathers the vectors at the specific positions.

  Args:
      sequence_tensor: Sequence output of `BertModel` layer of shape
        (`batch_size`, `seq_length`, num_hidden) where num_hidden is number of
        hidden units of `BertModel` layer.
      positions: Positions ids of tokens in sequence to mask for pretraining of
        with dimension (batch_size, max_predictions_per_seq) where
        `max_predictions_per_seq` is maximum number of tokens to mask out and
        predict per each sequence.

  Returns:
      Masked out sequence tensor of shape (batch_size * max_predictions_per_seq,
      num_hidden).
  """
47
  sequence_shape = tf_utils.get_shape_list(
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
      sequence_tensor, name='sequence_output_tensor')
  batch_size = sequence_shape[0]
  seq_length = sequence_shape[1]
  width = sequence_shape[2]

  flat_offsets = tf.keras.backend.reshape(
      tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
  flat_positions = tf.keras.backend.reshape(positions + flat_offsets, [-1])
  flat_sequence_tensor = tf.keras.backend.reshape(
      sequence_tensor, [batch_size * seq_length, width])
  output_tensor = tf.gather(flat_sequence_tensor, flat_positions)

  return output_tensor


class BertPretrainLayer(tf.keras.layers.Layer):
  """Wrapper layer for pre-training a BERT model.

  This layer wraps an existing `bert_layer` which is a Keras Layer.
  It outputs `sequence_output` from TransformerBlock sub-layer and
  `sentence_output` which are suitable for feeding into a BertPretrainLoss
  layer. This layer can be used along with an unsupervised input to
  pre-train the embeddings for `bert_layer`.
  """

  def __init__(self,
               config,
               bert_layer,
               initializer=None,
               float_type=tf.float32,
               **kwargs):
    super(BertPretrainLayer, self).__init__(**kwargs)
    self.config = copy.deepcopy(config)
    self.float_type = float_type

    self.embedding_table = bert_layer.embedding_lookup.embeddings
    self.num_next_sentence_label = 2
    if initializer:
      self.initializer = initializer
    else:
      self.initializer = tf.keras.initializers.TruncatedNormal(
          stddev=self.config.initializer_range)

  def build(self, unused_input_shapes):
92
    """Implements build() for the layer."""
93
94
95
96
    self.output_bias = self.add_weight(
        shape=[self.config.vocab_size],
        name='predictions/output_bias',
        initializer=tf.keras.initializers.Zeros())
97
98
    self.lm_dense = tf.keras.layers.Dense(
        self.config.hidden_size,
99
        activation=tf_utils.get_activation(self.config.hidden_act),
100
101
        kernel_initializer=self.initializer,
        name='predictions/transform/dense')
102
    self.lm_layer_norm = tf.keras.layers.LayerNormalization(
103
104
105
106
107
108
109
110
111
112
113
114
115
        axis=-1, epsilon=1e-12, name='predictions/transform/LayerNorm')

    # Next sentence binary classification dense layer including bias to match
    # TF1.x BERT variable shapes.
    with tf.name_scope('seq_relationship'):
      self.next_seq_weights = self.add_weight(
          shape=[self.num_next_sentence_label, self.config.hidden_size],
          name='output_weights',
          initializer=self.initializer)
      self.next_seq_bias = self.add_weight(
          shape=[self.num_next_sentence_label],
          name='output_bias',
          initializer=tf.keras.initializers.Zeros())
116
117
118
119
120
    super(BertPretrainLayer, self).build(unused_input_shapes)

  def __call__(self,
               pooled_output,
               sequence_output=None,
121
122
               masked_lm_positions=None,
               **kwargs):
123
    inputs = tf_utils.pack_inputs(
124
        [pooled_output, sequence_output, masked_lm_positions])
125
    return super(BertPretrainLayer, self).__call__(inputs, **kwargs)
126
127

  def call(self, inputs):
128
    """Implements call() for the layer."""
129
    unpacked_inputs = tf_utils.unpack_inputs(inputs)
130
131
132
133
    pooled_output = unpacked_inputs[0]
    sequence_output = unpacked_inputs[1]
    masked_lm_positions = unpacked_inputs[2]

Hongkun Yu's avatar
Hongkun Yu committed
134
    mask_lm_input_tensor = gather_indexes(sequence_output, masked_lm_positions)
135
136
    lm_output = self.lm_dense(mask_lm_input_tensor)
    lm_output = self.lm_layer_norm(lm_output)
137
138
139
140
141
142
143
    lm_output = tf.matmul(lm_output, self.embedding_table, transpose_b=True)
    lm_output = tf.nn.bias_add(lm_output, self.output_bias)
    lm_output = tf.nn.log_softmax(lm_output, axis=-1)

    logits = tf.matmul(pooled_output, self.next_seq_weights, transpose_b=True)
    logits = tf.nn.bias_add(logits, self.next_seq_bias)
    sentence_output = tf.nn.log_softmax(logits, axis=-1)
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    return (lm_output, sentence_output)


class BertPretrainLossAndMetricLayer(tf.keras.layers.Layer):
  """Returns layer that computes custom loss and metrics for pretraining."""

  def __init__(self, bert_config, **kwargs):
    super(BertPretrainLossAndMetricLayer, self).__init__(**kwargs)
    self.config = copy.deepcopy(bert_config)

  def __call__(self,
               lm_output,
               sentence_output=None,
               lm_label_ids=None,
               lm_label_weights=None,
159
160
               sentence_labels=None,
               **kwargs):
161
    inputs = tf_utils.pack_inputs([
162
163
164
        lm_output, sentence_output, lm_label_ids, lm_label_weights,
        sentence_labels
    ])
Hongkun Yu's avatar
Hongkun Yu committed
165
166
    return super(BertPretrainLossAndMetricLayer,
                 self).__call__(inputs, **kwargs)
167
168
169
170

  def _add_metrics(self, lm_output, lm_labels, lm_label_weights,
                   lm_per_example_loss, sentence_output, sentence_labels,
                   sentence_per_example_loss):
171
    """Adds metrics."""
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    masked_lm_accuracy = tf.keras.metrics.sparse_categorical_accuracy(
        lm_labels, lm_output)
    masked_lm_accuracy = tf.reduce_mean(masked_lm_accuracy * lm_label_weights)
    self.add_metric(
        masked_lm_accuracy, name='masked_lm_accuracy', aggregation='mean')

    lm_example_loss = tf.reshape(lm_per_example_loss, [-1])
    lm_example_loss = tf.reduce_mean(lm_example_loss * lm_label_weights)
    self.add_metric(lm_example_loss, name='lm_example_loss', aggregation='mean')

    next_sentence_accuracy = tf.keras.metrics.sparse_categorical_accuracy(
        sentence_labels, sentence_output)
    self.add_metric(
        next_sentence_accuracy,
        name='next_sentence_accuracy',
        aggregation='mean')

    next_sentence_mean_loss = tf.reduce_mean(sentence_per_example_loss)
    self.add_metric(
        next_sentence_mean_loss, name='next_sentence_loss', aggregation='mean')

  def call(self, inputs):
194
    """Implements call() for the layer."""
195
    unpacked_inputs = tf_utils.unpack_inputs(inputs)
196
197
    lm_output = unpacked_inputs[0]
    sentence_output = unpacked_inputs[1]
198
    lm_label_ids = unpacked_inputs[2]
199
200
201
202
203
204
205
206
207
208
209
    lm_label_ids = tf.keras.backend.reshape(lm_label_ids, [-1])
    lm_label_ids_one_hot = tf.keras.backend.one_hot(lm_label_ids,
                                                    self.config.vocab_size)
    lm_label_weights = tf.keras.backend.cast(unpacked_inputs[3], tf.float32)
    lm_label_weights = tf.keras.backend.reshape(lm_label_weights, [-1])
    lm_per_example_loss = -tf.keras.backend.sum(
        lm_output * lm_label_ids_one_hot, axis=[-1])
    numerator = tf.keras.backend.sum(lm_label_weights * lm_per_example_loss)
    denominator = tf.keras.backend.sum(lm_label_weights) + 1e-5
    mask_label_loss = numerator / denominator

210
    sentence_labels = unpacked_inputs[4]
211
212
213
214
215
216
    sentence_labels = tf.keras.backend.reshape(sentence_labels, [-1])
    sentence_label_one_hot = tf.keras.backend.one_hot(sentence_labels, 2)
    per_example_loss_sentence = -tf.keras.backend.sum(
        sentence_label_one_hot * sentence_output, axis=-1)
    sentence_loss = tf.keras.backend.mean(per_example_loss_sentence)
    loss = mask_label_loss + sentence_loss
217
    # TODO(hongkuny): Avoids the hack and switches add_loss.
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    final_loss = tf.fill(
        tf.keras.backend.shape(per_example_loss_sentence), loss)

    self._add_metrics(lm_output, lm_label_ids, lm_label_weights,
                      lm_per_example_loss, sentence_output, sentence_labels,
                      per_example_loss_sentence)
    return final_loss


def pretrain_model(bert_config,
                   seq_length,
                   max_predictions_per_seq,
                   initializer=None):
  """Returns model to be used for pre-training.

  Args:
      bert_config: Configuration that defines the core BERT model.
      seq_length: Maximum sequence length of the training data.
      max_predictions_per_seq: Maximum number of tokens in sequence to mask out
        and use for pretraining.
      initializer: Initializer for weights in BertPretrainLayer.

  Returns:
      Pretraining model as well as core BERT submodel from which to save
      weights after pretraining.
  """

  input_word_ids = tf.keras.layers.Input(
      shape=(seq_length,), name='input_word_ids', dtype=tf.int32)
  input_mask = tf.keras.layers.Input(
      shape=(seq_length,), name='input_mask', dtype=tf.int32)
  input_type_ids = tf.keras.layers.Input(
      shape=(seq_length,), name='input_type_ids', dtype=tf.int32)
  masked_lm_positions = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,),
      name='masked_lm_positions',
      dtype=tf.int32)
  masked_lm_weights = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,),
      name='masked_lm_weights',
      dtype=tf.int32)
  next_sentence_labels = tf.keras.layers.Input(
      shape=(1,), name='next_sentence_labels', dtype=tf.int32)
  masked_lm_ids = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,), name='masked_lm_ids', dtype=tf.int32)

264
  bert_submodel_name = 'bert_model'
265
266
267
268
269
270
271
272
273
274
275
276
  bert_submodel = modeling.get_bert_model(
      input_word_ids,
      input_mask,
      input_type_ids,
      name=bert_submodel_name,
      config=bert_config)
  pooled_output = bert_submodel.outputs[0]
  sequence_output = bert_submodel.outputs[1]

  pretrain_layer = BertPretrainLayer(
      bert_config,
      bert_submodel.get_layer(bert_submodel_name),
277
278
      initializer=initializer,
      name='cls')
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
  lm_output, sentence_output = pretrain_layer(pooled_output, sequence_output,
                                              masked_lm_positions)

  pretrain_loss_layer = BertPretrainLossAndMetricLayer(bert_config)
  output_loss = pretrain_loss_layer(lm_output, sentence_output, masked_lm_ids,
                                    masked_lm_weights, next_sentence_labels)

  return tf.keras.Model(
      inputs={
          'input_word_ids': input_word_ids,
          'input_mask': input_mask,
          'input_type_ids': input_type_ids,
          'masked_lm_positions': masked_lm_positions,
          'masked_lm_ids': masked_lm_ids,
          'masked_lm_weights': masked_lm_weights,
          'next_sentence_labels': next_sentence_labels,
      },
      outputs=output_loss), bert_submodel


class BertSquadLogitsLayer(tf.keras.layers.Layer):
  """Returns a layer that computes custom logits for BERT squad model."""

  def __init__(self, initializer=None, float_type=tf.float32, **kwargs):
    super(BertSquadLogitsLayer, self).__init__(**kwargs)
    self.initializer = initializer
    self.float_type = float_type

  def build(self, unused_input_shapes):
308
    """Implements build() for the layer."""
309
310
311
312
313
    self.final_dense = tf.keras.layers.Dense(
        units=2, kernel_initializer=self.initializer, name='final_dense')
    super(BertSquadLogitsLayer, self).build(unused_input_shapes)

  def call(self, inputs):
314
    """Implements call() for the layer."""
315
316
317
318
319
320
321
322
323
324
325
326
    sequence_output = inputs

    input_shape = sequence_output.shape.as_list()
    sequence_length = input_shape[1]
    num_hidden_units = input_shape[2]

    final_hidden_input = tf.keras.backend.reshape(sequence_output,
                                                  [-1, num_hidden_units])
    logits = self.final_dense(final_hidden_input)
    logits = tf.keras.backend.reshape(logits, [-1, sequence_length, 2])
    logits = tf.transpose(logits, [2, 0, 1])
    unstacked_logits = tf.unstack(logits, axis=0)
327
328
    if self.float_type == tf.float16:
      unstacked_logits = tf.cast(unstacked_logits, tf.float32)
329
330
331
    return unstacked_logits[0], unstacked_logits[1]


Hongkun Yu's avatar
Hongkun Yu committed
332
333
334
335
336
def squad_model(bert_config,
                max_seq_length,
                float_type,
                initializer=None,
                hub_module_url=None):
337
338
339
340
341
342
343
  """Returns BERT Squad model along with core BERT model to import weights.

  Args:
    bert_config: BertConfig, the config defines the core Bert model.
    max_seq_length: integer, the maximum input sequence length.
    float_type: tf.dtype, tf.float32 or tf.bfloat16.
    initializer: Initializer for weights in BertSquadLogitsLayer.
Hongkun Yu's avatar
Hongkun Yu committed
344
    hub_module_url: TF-Hub path/url to Bert module.
345
346
347
348
349
350
351
352
353
354
355
356
357

  Returns:
    Two tensors, start logits and end logits, [batch x sequence length].
  """
  unique_ids = tf.keras.layers.Input(
      shape=(1,), dtype=tf.int32, name='unique_ids')
  input_word_ids = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_ids')
  input_mask = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
  input_type_ids = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='segment_ids')

Hongkun Yu's avatar
Hongkun Yu committed
358
  if hub_module_url:
Hongkun Yu's avatar
Hongkun Yu committed
359
    core_model = hub.KerasLayer(hub_module_url, trainable=True)
Hongkun Yu's avatar
Hongkun Yu committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    _, sequence_output = core_model(
        [input_word_ids, input_mask, input_type_ids])
    # Sets the shape manually due to a bug in TF shape inference.
    # TODO(hongkuny): remove this once shape inference is correct.
    sequence_output.set_shape((None, max_seq_length, bert_config.hidden_size))
  else:
    core_model = modeling.get_bert_model(
        input_word_ids,
        input_mask,
        input_type_ids,
        config=bert_config,
        name='bert_model',
        float_type=float_type)
    # `BertSquadModel` only uses the sequnce_output which
    # has dimensionality (batch_size, sequence_length, num_hidden).
    sequence_output = core_model.outputs[1]
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

  if initializer is None:
    initializer = tf.keras.initializers.TruncatedNormal(
        stddev=bert_config.initializer_range)
  squad_logits_layer = BertSquadLogitsLayer(
      initializer=initializer, float_type=float_type, name='squad_logits')
  start_logits, end_logits = squad_logits_layer(sequence_output)

  squad = tf.keras.Model(
      inputs={
          'unique_ids': unique_ids,
          'input_ids': input_word_ids,
          'input_mask': input_mask,
          'segment_ids': input_type_ids,
      },
      outputs=[unique_ids, start_logits, end_logits],
      name='squad_model')
  return squad, core_model


def classifier_model(bert_config,
                     float_type,
                     num_labels,
                     max_seq_length,
400
401
                     final_layer_initializer=None,
                     hub_module_url=None):
402
403
404
405
406
407
408
409
410
411
412
413
  """BERT classifier model in functional API style.

  Construct a Keras model for predicting `num_labels` outputs from an input with
  maximum sequence length `max_seq_length`.

  Args:
    bert_config: BertConfig, the config defines the core BERT model.
    float_type: dtype, tf.float32 or tf.bfloat16.
    num_labels: integer, the number of classes.
    max_seq_length: integer, the maximum input sequence length.
    final_layer_initializer: Initializer for final dense layer. Defaulted
      TruncatedNormal initializer.
Hongkun Yu's avatar
Hongkun Yu committed
414
    hub_module_url: TF-Hub path/url to Bert module.
415
416
417
418
419
420
421
422
423
424
425

  Returns:
    Combined prediction model (words, mask, type) -> (one-hot labels)
    BERT sub-model (words, mask, type) -> (bert_outputs)
  """
  if final_layer_initializer is not None:
    initializer = final_layer_initializer
  else:
    initializer = tf.keras.initializers.TruncatedNormal(
        stddev=bert_config.initializer_range)

Hongkun Yu's avatar
Hongkun Yu committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
  if not hub_module_url:
    bert_encoder = networks.TransformerEncoder(
        vocab_size=bert_config.vocab_size,
        hidden_size=bert_config.hidden_size,
        num_layers=bert_config.num_hidden_layers,
        num_attention_heads=bert_config.num_attention_heads,
        intermediate_size=bert_config.intermediate_size,
        activation=tf_utils.get_activation('gelu'),
        dropout_rate=bert_config.hidden_dropout_prob,
        attention_dropout_rate=bert_config.attention_probs_dropout_prob,
        sequence_length=max_seq_length,
        max_sequence_length=bert_config.max_position_embeddings,
        type_vocab_size=bert_config.type_vocab_size,
        initializer=tf.keras.initializers.TruncatedNormal(
            stddev=bert_config.initializer_range))
    return bert_classifier.BertClassifier(
        bert_encoder,
        num_classes=num_labels,
        dropout_rate=bert_config.hidden_dropout_prob,
        initializer=initializer), bert_encoder

  input_word_ids = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_word_ids')
  input_mask = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
  input_type_ids = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_type_ids')
  bert_model = hub.KerasLayer(hub_module_url, trainable=True)
  pooled_output, _ = bert_model([input_word_ids, input_mask, input_type_ids])
455
456
  output = tf.keras.layers.Dropout(rate=bert_config.hidden_dropout_prob)(
      pooled_output)
Hongkun Yu's avatar
Hongkun Yu committed
457

458
459
460
461
462
463
464
465
466
467
468
469
470
  output = tf.keras.layers.Dense(
      num_labels,
      kernel_initializer=initializer,
      name='output',
      dtype=float_type)(
          output)
  return tf.keras.Model(
      inputs={
          'input_word_ids': input_word_ids,
          'input_mask': input_mask,
          'input_type_ids': input_type_ids
      },
      outputs=output), bert_model