bert_models.py 17.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT models that are compatible with TF 2.0."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import tensorflow as tf
23
import tensorflow_hub as hub
24

25
26
from official.modeling import tf_utils
from official.nlp import bert_modeling as modeling
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44


def gather_indexes(sequence_tensor, positions):
  """Gathers the vectors at the specific positions.

  Args:
      sequence_tensor: Sequence output of `BertModel` layer of shape
        (`batch_size`, `seq_length`, num_hidden) where num_hidden is number of
        hidden units of `BertModel` layer.
      positions: Positions ids of tokens in sequence to mask for pretraining of
        with dimension (batch_size, max_predictions_per_seq) where
        `max_predictions_per_seq` is maximum number of tokens to mask out and
        predict per each sequence.

  Returns:
      Masked out sequence tensor of shape (batch_size * max_predictions_per_seq,
      num_hidden).
  """
45
  sequence_shape = tf_utils.get_shape_list(
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
      sequence_tensor, name='sequence_output_tensor')
  batch_size = sequence_shape[0]
  seq_length = sequence_shape[1]
  width = sequence_shape[2]

  flat_offsets = tf.keras.backend.reshape(
      tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
  flat_positions = tf.keras.backend.reshape(positions + flat_offsets, [-1])
  flat_sequence_tensor = tf.keras.backend.reshape(
      sequence_tensor, [batch_size * seq_length, width])
  output_tensor = tf.gather(flat_sequence_tensor, flat_positions)

  return output_tensor


class BertPretrainLayer(tf.keras.layers.Layer):
  """Wrapper layer for pre-training a BERT model.

  This layer wraps an existing `bert_layer` which is a Keras Layer.
  It outputs `sequence_output` from TransformerBlock sub-layer and
  `sentence_output` which are suitable for feeding into a BertPretrainLoss
  layer. This layer can be used along with an unsupervised input to
  pre-train the embeddings for `bert_layer`.
  """

  def __init__(self,
               config,
               bert_layer,
               initializer=None,
               float_type=tf.float32,
               **kwargs):
    super(BertPretrainLayer, self).__init__(**kwargs)
    self.config = copy.deepcopy(config)
    self.float_type = float_type

    self.embedding_table = bert_layer.embedding_lookup.embeddings
    self.num_next_sentence_label = 2
    if initializer:
      self.initializer = initializer
    else:
      self.initializer = tf.keras.initializers.TruncatedNormal(
          stddev=self.config.initializer_range)

  def build(self, unused_input_shapes):
90
    """Implements build() for the layer."""
91
92
93
94
    self.output_bias = self.add_weight(
        shape=[self.config.vocab_size],
        name='predictions/output_bias',
        initializer=tf.keras.initializers.Zeros())
95
96
    self.lm_dense = tf.keras.layers.Dense(
        self.config.hidden_size,
97
        activation=tf_utils.get_activation(self.config.hidden_act),
98
99
        kernel_initializer=self.initializer,
        name='predictions/transform/dense')
100
    self.lm_layer_norm = tf.keras.layers.LayerNormalization(
101
102
103
104
105
106
107
108
109
110
111
112
113
        axis=-1, epsilon=1e-12, name='predictions/transform/LayerNorm')

    # Next sentence binary classification dense layer including bias to match
    # TF1.x BERT variable shapes.
    with tf.name_scope('seq_relationship'):
      self.next_seq_weights = self.add_weight(
          shape=[self.num_next_sentence_label, self.config.hidden_size],
          name='output_weights',
          initializer=self.initializer)
      self.next_seq_bias = self.add_weight(
          shape=[self.num_next_sentence_label],
          name='output_bias',
          initializer=tf.keras.initializers.Zeros())
114
115
116
117
118
119
    super(BertPretrainLayer, self).build(unused_input_shapes)

  def __call__(self,
               pooled_output,
               sequence_output=None,
               masked_lm_positions=None):
120
    inputs = tf_utils.pack_inputs(
121
122
123
124
        [pooled_output, sequence_output, masked_lm_positions])
    return super(BertPretrainLayer, self).__call__(inputs)

  def call(self, inputs):
125
    """Implements call() for the layer."""
126
    unpacked_inputs = tf_utils.unpack_inputs(inputs)
127
128
129
130
    pooled_output = unpacked_inputs[0]
    sequence_output = unpacked_inputs[1]
    masked_lm_positions = unpacked_inputs[2]

Hongkun Yu's avatar
Hongkun Yu committed
131
    mask_lm_input_tensor = gather_indexes(sequence_output, masked_lm_positions)
132
133
    lm_output = self.lm_dense(mask_lm_input_tensor)
    lm_output = self.lm_layer_norm(lm_output)
134
135
136
137
138
139
140
    lm_output = tf.matmul(lm_output, self.embedding_table, transpose_b=True)
    lm_output = tf.nn.bias_add(lm_output, self.output_bias)
    lm_output = tf.nn.log_softmax(lm_output, axis=-1)

    logits = tf.matmul(pooled_output, self.next_seq_weights, transpose_b=True)
    logits = tf.nn.bias_add(logits, self.next_seq_bias)
    sentence_output = tf.nn.log_softmax(logits, axis=-1)
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    return (lm_output, sentence_output)


class BertPretrainLossAndMetricLayer(tf.keras.layers.Layer):
  """Returns layer that computes custom loss and metrics for pretraining."""

  def __init__(self, bert_config, **kwargs):
    super(BertPretrainLossAndMetricLayer, self).__init__(**kwargs)
    self.config = copy.deepcopy(bert_config)

  def __call__(self,
               lm_output,
               sentence_output=None,
               lm_label_ids=None,
               lm_label_weights=None,
               sentence_labels=None):
157
    inputs = tf_utils.pack_inputs([
158
159
160
161
162
163
164
165
        lm_output, sentence_output, lm_label_ids, lm_label_weights,
        sentence_labels
    ])
    return super(BertPretrainLossAndMetricLayer, self).__call__(inputs)

  def _add_metrics(self, lm_output, lm_labels, lm_label_weights,
                   lm_per_example_loss, sentence_output, sentence_labels,
                   sentence_per_example_loss):
166
    """Adds metrics."""
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    masked_lm_accuracy = tf.keras.metrics.sparse_categorical_accuracy(
        lm_labels, lm_output)
    masked_lm_accuracy = tf.reduce_mean(masked_lm_accuracy * lm_label_weights)
    self.add_metric(
        masked_lm_accuracy, name='masked_lm_accuracy', aggregation='mean')

    lm_example_loss = tf.reshape(lm_per_example_loss, [-1])
    lm_example_loss = tf.reduce_mean(lm_example_loss * lm_label_weights)
    self.add_metric(lm_example_loss, name='lm_example_loss', aggregation='mean')

    next_sentence_accuracy = tf.keras.metrics.sparse_categorical_accuracy(
        sentence_labels, sentence_output)
    self.add_metric(
        next_sentence_accuracy,
        name='next_sentence_accuracy',
        aggregation='mean')

    next_sentence_mean_loss = tf.reduce_mean(sentence_per_example_loss)
    self.add_metric(
        next_sentence_mean_loss, name='next_sentence_loss', aggregation='mean')

  def call(self, inputs):
189
    """Implements call() for the layer."""
190
    unpacked_inputs = tf_utils.unpack_inputs(inputs)
191
192
    lm_output = unpacked_inputs[0]
    sentence_output = unpacked_inputs[1]
193
    lm_label_ids = unpacked_inputs[2]
194
195
196
197
198
199
200
201
202
203
204
    lm_label_ids = tf.keras.backend.reshape(lm_label_ids, [-1])
    lm_label_ids_one_hot = tf.keras.backend.one_hot(lm_label_ids,
                                                    self.config.vocab_size)
    lm_label_weights = tf.keras.backend.cast(unpacked_inputs[3], tf.float32)
    lm_label_weights = tf.keras.backend.reshape(lm_label_weights, [-1])
    lm_per_example_loss = -tf.keras.backend.sum(
        lm_output * lm_label_ids_one_hot, axis=[-1])
    numerator = tf.keras.backend.sum(lm_label_weights * lm_per_example_loss)
    denominator = tf.keras.backend.sum(lm_label_weights) + 1e-5
    mask_label_loss = numerator / denominator

205
    sentence_labels = unpacked_inputs[4]
206
207
208
209
210
211
    sentence_labels = tf.keras.backend.reshape(sentence_labels, [-1])
    sentence_label_one_hot = tf.keras.backend.one_hot(sentence_labels, 2)
    per_example_loss_sentence = -tf.keras.backend.sum(
        sentence_label_one_hot * sentence_output, axis=-1)
    sentence_loss = tf.keras.backend.mean(per_example_loss_sentence)
    loss = mask_label_loss + sentence_loss
212
    # TODO(hongkuny): Avoids the hack and switches add_loss.
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    final_loss = tf.fill(
        tf.keras.backend.shape(per_example_loss_sentence), loss)

    self._add_metrics(lm_output, lm_label_ids, lm_label_weights,
                      lm_per_example_loss, sentence_output, sentence_labels,
                      per_example_loss_sentence)
    return final_loss


def pretrain_model(bert_config,
                   seq_length,
                   max_predictions_per_seq,
                   initializer=None):
  """Returns model to be used for pre-training.

  Args:
      bert_config: Configuration that defines the core BERT model.
      seq_length: Maximum sequence length of the training data.
      max_predictions_per_seq: Maximum number of tokens in sequence to mask out
        and use for pretraining.
      initializer: Initializer for weights in BertPretrainLayer.

  Returns:
      Pretraining model as well as core BERT submodel from which to save
      weights after pretraining.
  """

  input_word_ids = tf.keras.layers.Input(
      shape=(seq_length,), name='input_word_ids', dtype=tf.int32)
  input_mask = tf.keras.layers.Input(
      shape=(seq_length,), name='input_mask', dtype=tf.int32)
  input_type_ids = tf.keras.layers.Input(
      shape=(seq_length,), name='input_type_ids', dtype=tf.int32)
  masked_lm_positions = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,),
      name='masked_lm_positions',
      dtype=tf.int32)
  masked_lm_weights = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,),
      name='masked_lm_weights',
      dtype=tf.int32)
  next_sentence_labels = tf.keras.layers.Input(
      shape=(1,), name='next_sentence_labels', dtype=tf.int32)
  masked_lm_ids = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,), name='masked_lm_ids', dtype=tf.int32)

259
  bert_submodel_name = 'bert_model'
260
261
262
263
264
265
266
267
268
269
270
271
  bert_submodel = modeling.get_bert_model(
      input_word_ids,
      input_mask,
      input_type_ids,
      name=bert_submodel_name,
      config=bert_config)
  pooled_output = bert_submodel.outputs[0]
  sequence_output = bert_submodel.outputs[1]

  pretrain_layer = BertPretrainLayer(
      bert_config,
      bert_submodel.get_layer(bert_submodel_name),
272
273
      initializer=initializer,
      name='cls')
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
  lm_output, sentence_output = pretrain_layer(pooled_output, sequence_output,
                                              masked_lm_positions)

  pretrain_loss_layer = BertPretrainLossAndMetricLayer(bert_config)
  output_loss = pretrain_loss_layer(lm_output, sentence_output, masked_lm_ids,
                                    masked_lm_weights, next_sentence_labels)

  return tf.keras.Model(
      inputs={
          'input_word_ids': input_word_ids,
          'input_mask': input_mask,
          'input_type_ids': input_type_ids,
          'masked_lm_positions': masked_lm_positions,
          'masked_lm_ids': masked_lm_ids,
          'masked_lm_weights': masked_lm_weights,
          'next_sentence_labels': next_sentence_labels,
      },
      outputs=output_loss), bert_submodel


class BertSquadLogitsLayer(tf.keras.layers.Layer):
  """Returns a layer that computes custom logits for BERT squad model."""

  def __init__(self, initializer=None, float_type=tf.float32, **kwargs):
    super(BertSquadLogitsLayer, self).__init__(**kwargs)
    self.initializer = initializer
    self.float_type = float_type

  def build(self, unused_input_shapes):
303
    """Implements build() for the layer."""
304
305
306
307
308
    self.final_dense = tf.keras.layers.Dense(
        units=2, kernel_initializer=self.initializer, name='final_dense')
    super(BertSquadLogitsLayer, self).build(unused_input_shapes)

  def call(self, inputs):
309
    """Implements call() for the layer."""
310
311
312
313
314
315
316
317
318
319
320
321
    sequence_output = inputs

    input_shape = sequence_output.shape.as_list()
    sequence_length = input_shape[1]
    num_hidden_units = input_shape[2]

    final_hidden_input = tf.keras.backend.reshape(sequence_output,
                                                  [-1, num_hidden_units])
    logits = self.final_dense(final_hidden_input)
    logits = tf.keras.backend.reshape(logits, [-1, sequence_length, 2])
    logits = tf.transpose(logits, [2, 0, 1])
    unstacked_logits = tf.unstack(logits, axis=0)
322
323
    if self.float_type == tf.float16:
      unstacked_logits = tf.cast(unstacked_logits, tf.float32)
324
325
326
    return unstacked_logits[0], unstacked_logits[1]


Hongkun Yu's avatar
Hongkun Yu committed
327
328
329
330
331
def squad_model(bert_config,
                max_seq_length,
                float_type,
                initializer=None,
                hub_module_url=None):
332
333
334
335
336
337
338
  """Returns BERT Squad model along with core BERT model to import weights.

  Args:
    bert_config: BertConfig, the config defines the core Bert model.
    max_seq_length: integer, the maximum input sequence length.
    float_type: tf.dtype, tf.float32 or tf.bfloat16.
    initializer: Initializer for weights in BertSquadLogitsLayer.
Hongkun Yu's avatar
Hongkun Yu committed
339
    hub_module_url: TF-Hub path/url to Bert module.
340
341
342
343
344
345
346
347
348
349
350
351
352

  Returns:
    Two tensors, start logits and end logits, [batch x sequence length].
  """
  unique_ids = tf.keras.layers.Input(
      shape=(1,), dtype=tf.int32, name='unique_ids')
  input_word_ids = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_ids')
  input_mask = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
  input_type_ids = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='segment_ids')

Hongkun Yu's avatar
Hongkun Yu committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
  if hub_module_url:
    core_model = hub.KerasLayer(
        hub_module_url,
        trainable=True)
    _, sequence_output = core_model(
        [input_word_ids, input_mask, input_type_ids])
    # Sets the shape manually due to a bug in TF shape inference.
    # TODO(hongkuny): remove this once shape inference is correct.
    sequence_output.set_shape((None, max_seq_length, bert_config.hidden_size))
  else:
    core_model = modeling.get_bert_model(
        input_word_ids,
        input_mask,
        input_type_ids,
        config=bert_config,
        name='bert_model',
        float_type=float_type)
    # `BertSquadModel` only uses the sequnce_output which
    # has dimensionality (batch_size, sequence_length, num_hidden).
    sequence_output = core_model.outputs[1]
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

  if initializer is None:
    initializer = tf.keras.initializers.TruncatedNormal(
        stddev=bert_config.initializer_range)
  squad_logits_layer = BertSquadLogitsLayer(
      initializer=initializer, float_type=float_type, name='squad_logits')
  start_logits, end_logits = squad_logits_layer(sequence_output)

  squad = tf.keras.Model(
      inputs={
          'unique_ids': unique_ids,
          'input_ids': input_word_ids,
          'input_mask': input_mask,
          'segment_ids': input_type_ids,
      },
      outputs=[unique_ids, start_logits, end_logits],
      name='squad_model')
  return squad, core_model


def classifier_model(bert_config,
                     float_type,
                     num_labels,
                     max_seq_length,
397
398
                     final_layer_initializer=None,
                     hub_module_url=None):
399
400
401
402
403
404
405
406
407
408
409
410
  """BERT classifier model in functional API style.

  Construct a Keras model for predicting `num_labels` outputs from an input with
  maximum sequence length `max_seq_length`.

  Args:
    bert_config: BertConfig, the config defines the core BERT model.
    float_type: dtype, tf.float32 or tf.bfloat16.
    num_labels: integer, the number of classes.
    max_seq_length: integer, the maximum input sequence length.
    final_layer_initializer: Initializer for final dense layer. Defaulted
      TruncatedNormal initializer.
Hongkun Yu's avatar
Hongkun Yu committed
411
    hub_module_url: TF-Hub path/url to Bert module.
412
413
414
415
416
417
418
419
420
421
422

  Returns:
    Combined prediction model (words, mask, type) -> (one-hot labels)
    BERT sub-model (words, mask, type) -> (bert_outputs)
  """
  input_word_ids = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_word_ids')
  input_mask = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
  input_type_ids = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_type_ids')
423
424
425
426
427
428
429
430
431
432
433
434
  if hub_module_url:
    bert_model = hub.KerasLayer(hub_module_url, trainable=True)
    pooled_output, _ = bert_model([input_word_ids, input_mask, input_type_ids])
  else:
    bert_model = modeling.get_bert_model(
        input_word_ids,
        input_mask,
        input_type_ids,
        config=bert_config,
        float_type=float_type)
    pooled_output = bert_model.outputs[0]

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
  if final_layer_initializer is not None:
    initializer = final_layer_initializer
  else:
    initializer = tf.keras.initializers.TruncatedNormal(
        stddev=bert_config.initializer_range)

  output = tf.keras.layers.Dropout(rate=bert_config.hidden_dropout_prob)(
      pooled_output)
  output = tf.keras.layers.Dense(
      num_labels,
      kernel_initializer=initializer,
      name='output',
      dtype=float_type)(
          output)
  return tf.keras.Model(
      inputs={
          'input_word_ids': input_word_ids,
          'input_mask': input_mask,
          'input_type_ids': input_type_ids
      },
      outputs=output), bert_model